当前位置:主页 > 查看内容

sklearn预测pima糖尿病

发布时间:2021-08-12 00:00| 位朋友查看

简介:文章目录 数据集描述 准备工作 实验环境和工具 预测分析 探索性数据分析 数据描述 可视化分析 构建baseline 数据预处理 离群值处理 缺失值处理 特征工程 数据标准化 模型构建与调参优化 完整代码 数据集描述 本数据集内含十个属性列 Pergnancies: 怀孕次数 G……

数据集描述

本数据集内含十个属性列
Pergnancies: 怀孕次数
Glucose:血糖浓度
BloodPressure:舒张压(毫米汞柱)
SkinThickness:肱三头肌皮肤褶皱厚度(毫米)
Insulin:两个小时血清胰岛素(μU/毫升)
BMI:身体质量指数,体重除以身高的平方
Diabets Pedigree Function: 疾病血统指数
是否和遗传相关,Height:身高(厘米)
Age:年龄
Outcome:0表示不患病,1表示患病。

任务:建立机器学习模型以准确预测数据集中的患者是否患有糖尿病

准备工作

查阅资料得知各属性的数据值要求,方面后期对于数据的分析与处理过程。
属性列名称 数据值要求
Pergnancies(怀孕次数) 符合常理即可(可为0)
Glucose(血糖浓度) 正常值为:80~120
BloodPressure(舒张压(毫米汞柱)) 正常值为:60~80
SkinThickness(肱三头肌皮肤褶皱厚度(毫米)) 不为0
Insulin(两个小时血清胰岛素(/毫升)) 正常值为:35~145
BMI(身体质量指数:体重除以身高的平方) 正常值为:18.5~24.9
Diabets Pedigree Function:(疾病血统指数:是否和遗传相关) 无特殊值要求
Height(身高(厘米)) 不为0 符合常理即可
Age(年龄) 符合常理即可
Outcome(0表示不患病,1表示患病) 标签值

实验环境和工具

python3.5.6 + jupyter
数据处理 pandas、numpy
可视化 matplotlib、seaborn
模型构建 sklearn

预测分析

探索性数据分析

数据描述

首先观察基本的数据类型,以及数据是否存在缺失情况,简要统计信息

all_data.shape
all_data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 768 entries, 0 to 767
Data columns (total 10 columns):
 #   Column                    Non-Null Count  Dtype  
---  ------                    --------------  -----  
 0   Pregnancies               768 non-null    int64  
 1   Glucose                   768 non-null    int64  
 2   BloodPressure             768 non-null    int64  
 3   SkinThickness             768 non-null    int64  
 4   Insulin                   768 non-null    int64  
 5   BMI                       768 non-null    float64
 6   DiabetesPedigreeFunction  768 non-null    float64
 7   Age                       768 non-null    int64  
 8   Height                    766 non-null    object 
 9   Outcome                   768 non-null    int64  
dtypes: float64(2), int64(7), object(1)
memory usage: 60.1+ KB

数据总量时比较少的只有768个例子,可以看到除Height外的属性都为数值型属性。在后续数据预处理过程需要对Height属性进行类型转换操作。目前没有缺失值的出现。

# height 数值类型 为object 需要转化为 数值型
all_data = all_data.astype({'Height':'float64'}) 
all_data.describe()

在这里插入图片描述
发现两个问题:

  1. 缺失值
    从其中的min值可以很直观地观察到,Glucose, BloodPressure, SkinTinckness, Insulin, BMI等特征存在0值的情况(当然Pregnancies根据常识判断是可以为0的)。而根据常规范围明显可以判定这些0值是不合理的,所以也是一种缺失值缺失值,后续数据预处理需要对这些缺失值进行填充处理。
  2. 离群值/异常值
    Glucose,BloodPressure,SkinTinckness,Insulin等特征的max值和75%分位点值或者min值和25%分位点值之间的差距比较大,初步判断可能存在离群值/异常值。尤其是SkinThickness和Insulin特征(具体见图4红色框部分),后续可以通过可视化进一步直观地观察判断。
    为了方便后序对缺失值的统一处理,将异常值统一替换为np.nan。
import numpy as np
#缺失值替换 经分析,除怀孕次数,其他特征的0值表示缺失值 替换为np.nan
replace_list = ['Glucose', 'BloodPressure', 'SkinThickness', 'Insulin', 'BMI', 'Height']
all_data.loc[:,replace_list] = all_data.loc[:,replace_list].replace({0:np.nan})
#各特征缺失数量统计
null_count = all_data.isnull().sum().values
# 缺失值情况
plt.figure()
sns.barplot(x = null_count, y = all_data.columns)
for x, y in enumerate(null_count):
    plt.text(y, x, "%s" %y, horizontalalignment='center', verticalalignment='center')
plt.show()

在这里插入图片描述
可以观察到Glucose,Insulin,SkinThickness,BMI,Height等特征都存在缺失值。并且 Insulin,SkinThickness缺失值比较多,分别占到了48%,30%的比例。所以后期数据预处理也是很关键的。

可视化分析

接下来通过更多针对性的可视化,来进一步探索特征值的分布以及特征和预测变量之间的关系

# 患病和不患病情况下 箱线图查看数据分散情况
for col in all_data.columns:
    plt.figure(figsize = (10,6))
    if all_data[col].unique().shape[0] > 2:
        sns.boxplot(x="Outcome", y=col, data=all_data.dropna())
    else:
        sns.countplot(col,hue = 'Outcome',data = all_data.dropna())
    plt.title(col)
    plt.show()

部分输出:
在这里插入图片描述

在这里插入图片描述

观察患病和不患病情况下 各特征值或者人数分布
label接近2:1 存在一定的分布不平衡 
像insulin之类的特征离群值是比较多的,由于离群值会对模型评估产生影响,所以后续可能要做处理,剔除偏离较大的离群值
# 患病和不患病情况下 各特征的分布情况
for col in all_data.drop('Outcome',1).columns:
    plt.figure()
    sns.displot(data = all_data, x = col,hue = 'Outcome',kind='kde')
    plt.show()

部分输出:
在这里插入图片描述


在这里插入图片描述

  1. 从数据样本本身出发研究数据分布特征,可以发现在患病和不患病两种情况下,部分特征的密度分布比较相近,特别是height的分布图,发现两曲线基本相近。感觉和label之间的相关性都不是很强。
  2. 同时,可以发现部分特征存在右偏的现象(skewness (偏度) 描述数据分布形态的统计量,其描述的是某总体取值分布的对称性),考虑到需要数据尽量服从正态分布,所以后续数据预处理需要对存在一定偏度的特征进行相关处理。
# 观察各特征分布和患病的关系
corr = all_data.corr()
plt.figure(figsize = (8,6))
sns.heatmap(corr,annot = True,cmap = 'Blues')
plt.show()

在这里插入图片描述
heatmap()函数可以直观地将数据值的大小以定义的颜色深浅表示出来。

  1. 可以发现颜色相对来说都比较浅,也就是说无论是特征和特征之间还是特征和outcome标签之间的相关性都没有很高。
  2. 发现其余各特征变量中与outcome的相关度中最高的是Glucose 属性值为0.49,最低的是Height属性值为0.059。
  3. 同时观察特征与特征之间的关系,发现Insulin与Glucose,BMI和SkinThickness之间的相关度分别为0.58,0.65属于比较高的相关性,由于Insulin是一个确实比较严重的特征,而相关性可以是一种协助填充缺失值的方法。
plt.figure()
sns.scatterplot(x = 'Insulin', y = 'Glucose', data = all_data)
plt.show()
sns.scatterplot(x = 'Insulin', y = 'BMI', data = all_data)
plt.show()
sns.scatterplot(x = 'Insulin', y = 'Age', data = all_data)
plt.show()

plt.figure()
sns.scatterplot(x = 'SkinThickness', y = 'BMI', data = all_data)
plt.show()
sns.scatterplot(x = 'SkinThickness', y = 'Glucose', data = all_data)
plt.show()
sns.scatterplot(x = 'SkinThickness', y = 'BloodPressure', data = all_data)
plt.show()

部分输出:
在这里插入图片描述
在这里插入图片描述

构建baseline

因为决策树几乎不需要数据预处理。其他方法经常需要数据标准化,创建虚拟变量和删除缺失值。

# 读取数据
all_data = pd.read_csv('data.csv')

# height 数值类型 为object 需要转化为 数值型
all_data = all_data.astype({'Height':'float64'})
# 
all_data.dropna(inplace = True)
# 特征
feature_data = all_data.drop('Outcome',1)
# 标签
label = all_data['Outcome']

base_model = DecisionTreeClassifier()
base_scores = cross_validate(base_model, feature_data, label,cv=5,return_train_score=True)
print(base_scores['test_score'].mean())
0.6954248366013072

数据预处理

综合前面分析,先做了以下处理

# 读取数据
all_data = pd.read_csv('data.csv')

# height 数值类型 为object 需要转化为 数值型
all_data = all_data.astype({'Height':'float64'})

# 理论缺失值0替换为np.nan
replace_list = ['Glucose', 'BloodPressure', 'SkinThickness', 'Insulin', 'BMI', 'Height']
all_data.loc[:,replace_list] = all_data.loc[:,replace_list].replace({0:np.nan})

# 删除相关性低的Height
all_data.drop('Height',1,inplace = True)

离群值处理

  1. 经过前面的分析发现数据是存在部分离群值的,虽然实验本身就是关于疾病预测,异常值的存在属于正常现象。但是对于一些可能超出人体接受范围的值,衡量对预测的影响之后,由于数据量比较小,这里选择删除极端异常点。
  2. 极端异常点 :上限的计算公式为Q3+3(Q3-Q1) 下界的计算公式为Q1-3(Q3-Q1))。
# remove the outliers
# 异常点 上须的计算公式为Q3+1.5(Q3-Q1);下须的计算公式为Q1-1.5(Q3-Q1)
# 极端异常点 :上限的计算公式为Q3+3(Q3-Q1) 下界的计算公式为Q1-3(Q3-Q1)
# 由于数据量比较少 所以选择删除极端异常值
def remove_outliers(feature,all_data):
    first_quartile = all_data[feature].describe()['25%']
    third_quartile = all_data[feature].describe()['75%']
    iqr = third_quartile - first_quartile
    # 异常值下标
    index = all_data[(all_data[feature] < (first_quartile - 3*iqr)) | (all_data[feature] > (first_quartile + 3*iqr))].index
    all_data = all_data.drop(index)
    return all_data
outlier_features = ['Insulin', 'Glucose', 'BloodPressure', 'SkinThickness', 'BMI', 'DiabetesPedigreeFunction']
for feat in outlier_features:
    all_data = remove_outliers(feat,all_data)

处理之后的数据基本的统计信息
在这里插入图片描述

缺失值处理

缺失值处理这里考虑

  1. 直接删除处理
def drop_method(all_data):
    median_fill = ['Glucose', 'BloodPressure','SkinThickness', 'BMI','Height']
    for column in median_fill:
        median_val = all_data[column].median()
        all_data[column].fillna(median_val, inplace=True)
    all_data.dropna(inplace = True)
    return all_data
  1. 中值填充
def median_method():
    for column in list(all_data.columns[all_data.isnull().sum() > 0]):
        median = all_data[column].median()
        all_data[column].fillna(median, inplace=True)
  1. KNNImputer填充
def knn_method():
    # 先将缺失值比较少的特征用中值填充
    values = {'Glucose': all_data['Glucose'].median(),'BloodPressure':all_data['BloodPressure'].median(),'BMI':all_data['BMI'].median()}
    all_data.fillna(value=values,inplace=True)

    # 用KNNImputer 填充 Insulin SkinThickness
    corr_SkinThickness = ['BMI', 'Glucose','BloodPressure', 'SkinThickness']
    # 权重按距离的倒数表示。在这种情况下,查询点的近邻比远处的近邻具有更大的影响力
    SkinThickness_imputer = KNNImputer(n_neighbors = 16,weights = 'distance')
    all_data[corr_SkinThickness] = SkinThickness_imputer.fit_transform(all_data[corr_SkinThickness])

    corr_Insulin = ['Glucose', 'BMI','BloodPressure', 'Insulin']
    Insulin_imputer = KNNImputer(n_neighbors = 16,weights = 'distance')
    all_data[corr_Insulin] = Insulin_imputer.fit_transform(all_data[corr_Insulin])
  1. 随机森林填充
from sklearn.ensemble import RandomForestRegressor
from sklearn.impute import SimpleImputer  # 用来填补缺失值
def predict_method(feature):
    # 复制一份数据 避免对原数据做出不必要的修改
    copy_data = all_data.copy()
    # 缺失了的下标
    predict_index = copy_data[copy_data[feature].isnull()].index
    # 没缺失的下标
    train_index = copy_data[feature].dropna().index
    # 用作预测 的训练集标签
    train_label = copy_data.loc[train_index,feature]
    copy_data = copy_data.drop(feature,axis=1)
    # 对特征先用中值填充
    imp_median = SimpleImputer(strategy='median')
    # 用作预测的训练集特征
    train_feature = copy_data.loc[train_index]
    train_feature = imp_median.fit_transform(train_feature)
    # 需要进行预测填充处理的缺失值
    pre_feature = copy_data.loc[predict_index]
    pre_feature = imp_median.fit_transform(pre_feature)
    # 选取随机森林模型
    fill_model = RandomForestRegressor()
    fill_model = fill_model.fit(train_feature,train_label)
    # 预测 填充
    pre_value = fill_model.predict(pre_feature)
    all_data.loc[predict_index,feature] = pre_value

#用随机森林的方法填充缺失值较多的 SkinThickness 和 Insulin 缺失值
predict_method("Insulin")
predict_method("SkinThickness")
# 其余值中值填充
for column in list(all_data.columns[all_data.isnull().sum() > 0]):
    median = all_data[column].median()
    all_data[column].fillna(median, inplace=True)

特征工程

# 特征
feture_data = all_data.drop('Outcome',1)
# 标签
label = all_data['Outcome']
# 利用BMI和身高构造weight特征
# BMI = weight(kg) / height(m)**2
feture_data['weight'] = (0.01*feture_data['Height'])**2 * feture_data['BMI']

数据标准化

# 标准化
Std = StandardScaler()
feture_data = Std.fit_transform(feture_data)

模型构建与调参优化

用到的模型

from sklearn.svm import SVC,SVR
from sklearn.tree import DecisionTreeClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier,StackingClassifier

调参方法

from sklearn.model_selection import GridSearchCV

def train(model, params):
    grid_search = GridSearchCV(estimator = model, param_grid = params, cv = kfold)
    grid_search.fit(feture_data,label)
    print(grid_search.best_params_)
    model_score = cross_validate(grid_search.best_estimator_,feture_data, label, cv=5)
    print(model_score['test_score'])
    print("mean test score :{}".format(model_score['test_score'].mean()))
    return grid_search

SVC

#调参时先尝试一个大范围,确定比较小的范围,然后在小范围里搜索
model = SVC()
params  =  {'C':np.linspace(0.1, 2, 100)}
SVC_grid_search = train(model,params)
plt.figure()
sns.lineplot(x=[x for x in range(100)],y=SVC_grid_search.cv_results_['mean_test_score'])
plt.show()

LogisticRegression

params = {"C":np.linspace(0.1,2,100)}
model = LogisticRegression()
LR_grid_search= train(model,params)
plt.figure()
sns.lineplot(x=[x for x in range(100)],y=LR_grid_search.cv_results_['mean_test_score'])
plt.show()

RandomForestClassifier

params = {"n_estimators":[x for x in range(30,50,4)],'min_samples_split':[x for x in range(2,12)]}
model = RandomForestClassifier()
RFC_grid_search = train(model,params)
plt.figure()
sns.lineplot(x=[x for x in range(len(grid_search.cv_results_['mean_test_score']))],
             y=RFC_grid_search.cv_results_['mean_test_score'])
plt.show()

StackingClassifier

estimators = [
    ('SVC',SVC_grid_search.best_estimator_),
    ('NB', LR_grid_search.best_estimator_),
    ('RFC', RFC_grid_search.best_estimator_)
]
model = StackingClassifier(estimators=estimators, final_estimator=SVC())
model_score = cross_validate(model,feture_data, label, cv=5)
print(model_score['test_score'])
print("mean test score :{}".format(model_score['test_score'].mean()))

缺失值直接删除预测结果:
{‘C’: 1.405050505050505}
[0.83333333 0.71830986 0.83098592 0.83098592 0.84507042]
mean test score :0.811737089201878

{‘C’: 0.17676767676767677}
[0.86111111 0.73239437 0.77464789 0.83098592 0.84507042]
mean test score :0.8088419405320814

{‘min_samples_split’: 7, ‘n_estimators’: 30}
[0.77777778 0.69014085 0.74647887 0.83098592 0.85915493]
mean test score :0.780907668231612

[0.84722222 0.73239437 0.81690141 0.84507042 0.85915493]
mean test score :0.8201486697965571
缺失值中值填充预测效果
{‘C’: 1.7888888888888888}
[0.79452055 0.75342466 0.78082192 0.82191781 0.79310345]
mean test score :0.7887576759565423

{‘C’: 0.1575757575757576}
[0.78082192 0.76712329 0.7739726 0.80821918 0.77931034]
mean test score :0.7818894662257911

{‘min_samples_split’: 4, ‘n_estimators’: 44}
[0.80136986 0.71232877 0.74657534 0.81506849 0.79310345]
mean test score :0.7736891828058574
其余略 可以看出由于缺失值比较多,所以填充比直接删除的效果是要更差的

完整代码

https://github.com/wang-hui-shan/Pima_Diabetes_Predict

;原文链接:https://blog.csdn.net/qq_43402639/article/details/115841530
本站部分内容转载于网络,版权归原作者所有,转载之目的在于传播更多优秀技术内容,如有侵权请联系QQ/微信:153890879删除,谢谢!
上一篇:Python实战 | 手拉手教你爬取贝壳房源数据 下一篇:没有了

推荐图文


随机推荐