当前位置:主页 > 查看内容

一文带你理解最简消息队列实现

发布时间:2021-05-07 00:00| 位朋友查看

简介:最近在看公司的 redis queue 时,发现底层使用的是 go-zero 的 queue 。本篇文章来看看 queue 的设计,也希望可以从里面了解到 mq 的最小型设计实践。 使用 结合其他 mq 的使用经历,基本的使用流程: 创建 producer 或 consumer 启动 mq 生产消息/消费消息……

最近在看公司redis queue 时,发现底层使用的是 go-zeroqueue 。本篇文章来看看 queue设计,也希望可以从里面了解到 mq 的最小型设计实践。

使用

结合其他 mq 的使用经历,基本的使用流程:

  1. 创建 producerconsumer
  2. 启动 mq
  3. 生产消息/消费消息

对应到 queue 中,大致也是这个:

创建 queue

// 生产者创建工厂
producer := newMockedProducer()
// 消费者创建工厂
consumer := newMockedConsumer()
// 将生产者以及消费者的创建工厂函数传递给 NewQueue()
q := queue.NewQueue(func() (Producer, error) {
  return producer, nil
}, func() (Consumer, error) {
  return consumer, nil
})

我们看看 NewQueue 需要什么构建条件:

  1. producer constructor
  2. consumer constructor

将双方的工厂函数传递给 queue ,由它去执行以及重试。

这两个需要的目的是将生产者/消费者的构建和消息生产/消费都封装在 mq 中,而且将生产者/消费者的整套逻辑交给开发者处理:

type (
    // 开发者需要实现此接口
    Producer interface {
        AddListener(listener ProduceListener)
        Produce() (string, bool)
    }
    ...
    // ProducerFactory定义了生成Producer的方法
    ProducerFactory func() (Producer, error)
)
  1. 其实也就是将生产者的逻辑交个开发者自己完成,mq 只负责生产者/消费者的消息传递和之间的调度。
  2. 工厂方法的设计,是将生产者本身和生产消息,这两个任务都交给 queue 自己来做调度或者重试。

生产msg

生产消息当然要回到生产者本身:

type mockedProducer struct {
    total int32
    count int32
  // 使用waitgroup来模拟任务的完成
    wait  sync.WaitGroup
}
// 实现 Producer interface 的方法:Produce()
func (p *mockedProducer) Produce() (string, bool) {
    if atomic.AddInt32(&p.count, 1) <= p.total {
        p.wait.Done()
        return "item", true
    }
    time.Sleep(time.Second)
    return "", false
}

queue 中的生产者编写都必须实现:

  • Produce():由开发者编写生产消息的逻辑
  • AddListener():生产者

消费msg

和生产者类似:

type mockedConsumer struct {
    count  int32
}

func (c *mockedConsumer) Consume(string) error {
    atomic.AddInt32(&c.count, 1)
    return nil
}

启动 queue

启动,然后验证我们上述的生产者和消费者之间的数据是否传输成功:

func TestQueue(t *testing.T) {
    producer := newMockedProducer(rounds)
    consumer := newMockedConsumer()
    // 创建 queue
    q := NewQueue(func() (Producer, error) {
        return producer, nil
    }, func() (Consumer, error) {
        return consumer, nil
    })
    // 当生产者生产完毕,执行 Stop() 关闭生产端生产
    go func() {
        producer.wait.Wait()
    // mq生产端停止生产,不是mq本身 Stop 运行
        q.Stop()
    }()
    // 启动
    q.Start()
    // 验证生产消费端是否消息消费完成
    assert.Equal(t, int32(rounds), atomic.LoadInt32(&consumer.count))
}

以上就是 queue 最简易的入门使用代码。开发者可以根据自己的业务实际情况:自由定义生产者/消费者已经生产/消费逻辑。

整体设计

image-20210506224102836

整体流程如上图:

  1. 全体的通信都由 channel 进行
  2. 通过加入监听器 listener ,以及事件触发 event ,相当于将触发器逻辑分离出来
  3. 生产者有 produceone ,这个是生产消息的逻辑,但是其中的 Produce() 是由开发者编写【上面的 interface 中正是这个函数】
  4. 同理消费者,Consume()

基本的消息流动就入上图以及上述描写的,具体的代码分析我们就留到下一篇,我们??分析里面,尤其是如何控制 channel 是整个设计的核心。

总结

本篇文章从使用以及整个架构分析上简略介绍了 queue 的设计。下篇我们将深入源码,分析内部消息流转以及 channel 控制。

关于 go-zero 更多的设计和实现文章,可以持续关注我们。欢迎大家去关注和使用。

项目地址

https://github.com/tal-tech/go-zero

欢迎使用 go-zero 并 star 支持我们!

微信交流群

关注『微服务实践』公众号并回复 进群 获取社区群二维码。

go-zero 系列文章见『微服务实践』公众号

本文转自网络,版权归原作者所有,原文链接:https://segmentfault.com/a/1190000039956563
本站部分内容转载于网络,版权归原作者所有,转载之目的在于传播更多优秀技术内容,如有侵权请联系QQ/微信:153890879删除,谢谢!

推荐图文

  • 周排行
  • 月排行
  • 总排行

随机推荐