前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >PyTorch之迁移学习实战

PyTorch之迁移学习实战

作者头像
IT派
发布2018-08-10 15:07:15
6000
发布2018-08-10 15:07:15
举报
文章被收录于专栏:IT派

简介:

迁移学习是把一个领域(即源领域)的知识,迁移到另外一个领域(即目标领域),使得目标领域能够取得更好的学习效果。通常,源领域数据量充足,而目标领域数据量较小,迁移学习需要将在数据量充足的情况下学习到的知识,迁移到数据量小的新环境中。

本文我们根据PyTorch官网上的例子(作者:Sasank Chilamkurthy)学习如何使用传输学习来训练网络。 关于迁移学习的更多例子:http://cs231n.github.io/transfer-learning/

在实际工程上,很少有人从头开始训练整个卷积网络(随机初始化),因为拥有足够大小的数据集相对来说比较少见。 相反,我们可以在一个非常大的数据集(例如ImageNet,其中包含具有1000个类别的120万个图像)上预训练ConvNet模型,然后使用ConvNet模型作为初始化或固定特征提取器来处理继续处理当前的任务。这也是迁移学习常见的二个场景: 1.Finetuning the convnet: 用一个预训练好的网络模型来初始化网络当前模型参数,而不是随机初始化网络。(就像在imagenet 1000数据集上训练的网络一样。 其余过程一样)

2.ConvNet as fixed feature extractor: 冻结除最终完全连接层之外的所有网络的权重。 这个完全连接的层被替换为具有随机权重的新层,并且只有这个层被训练。

数据集

本文使用的数据集是imagenet的一个非常小的子集。数据集只包括蚂蚁和蜜蜂,要解决的问题是训练一个模型来分类蚂蚁和蜜蜂。 由于这是一个非常小的数据集。 所以我们使用迁移学习。

代码语言:javascript
复制
data_transforms = {    'train': transforms.Compose([
        transforms.RandomResizedCrop(224),
        transforms.RandomHorizontalFlip(),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ]),    'val': transforms.Compose([
        transforms.Resize(256),
        transforms.CenterCrop(224),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ]),
}

data_dir = './data/hymenoptera_data'image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x),
                                          data_transforms[x])                  for x in ['train', 'val']}
dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=4,
                                             shuffle=True, num_workers=4)              for x in ['train', 'val']}
dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'val']}
class_names = image_datasets['train'].classesdef imshow(inp, title=None):
    """Imshow for Tensor."""
    inp = inp.numpy().transpose((1, 2, 0))
    mean = np.array([0.485, 0.456, 0.406])
    std = np.array([0.229, 0.224, 0.225])
    inp = std * inp + mean
    inp = np.clip(inp, 0, 1)
    plt.imshow(inp)
    plt.show()if __name__ ==  '__main__':    # Get a batch of training data
    inputs, classes = next(iter(dataloaders['train']))    # Make a grid from batch
    out = torchvision.utils.make_grid(inputs)
    imshow(out, title=[class_names[x] for x in classes])1234567891011121314151617181920212223242526272829303132333435363738394041

训练模型

我们通过迁移学习,将预训练好的模型迁移到当前的任务中来,分为二种方式: 1.Finetuning the convnet,使用resnet18训练好的模型来初始化当前模型的参数,后续训练过程和以前一样。

代码语言:javascript
复制
 model_ft = models.resnet18(pretrained=True)
    num_ftrs = model_ft.fc.in_features
    model_ft.fc = nn.Linear(num_ftrs, 2)

    criterion = nn.CrossEntropyLoss()    # Observe that all parameters are being optimized
    optimizer_ft = optim.SGD(model_ft.parameters(), lr=0.001, momentum=0.9)    # Decay LR by a factor of 0.1 every 7 epochs
    exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1)

    model_ft = train_model(model_ft, criterion, optimizer_ft, exp_lr_scheduler, num_epochs=2)12345678910111213

2.ConvNet as fixed feature extractor,冻结除最后一层(全连接层)之外的所有参数,然后小数据集训练时,只更新全连接层的参数。

代码语言:javascript
复制
model_conv = torchvision.models.resnet18(pretrained=True)
for param in model_conv.parameters():
    param.requires_grad = False# Parameters of newly constructed modules have requires_grad=True by defaultnum_ftrs = model_conv.fc.in_features
model_conv.fc = nn.Linear(num_ftrs, 2)

criterion = nn.CrossEntropyLoss()# Observe that only parameters of final layer are being optimized as# opoosed to before.optimizer_conv = optim.SGD(model_conv.fc.parameters(), lr=0.001, momentum=0.9)# Decay LR by a factor of 0.1 every 7 epochsexp_lr_scheduler = lr_scheduler.StepLR(optimizer_conv, step_size=7, gamma=0.1)123456789101112131415

完整代码:

代码语言:javascript
复制
from __future__ import print_function, divisionimport torchimport torch.nn as nnimport torch.optim as optimfrom torch.optim import lr_schedulerfrom torch.autograd import Variableimport numpy as npimport torchvisionfrom torchvision import datasets, models, transformsimport matplotlib.pyplot as pltimport timeimport osimport copy

data_transforms = {    'train': transforms.Compose([
        transforms.RandomResizedCrop(224),
        transforms.RandomHorizontalFlip(),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ]),    'val': transforms.Compose([
        transforms.Resize(256),
        transforms.CenterCrop(224),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ]),
}

data_dir = './data/hymenoptera_data'image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x),
                                          data_transforms[x])                  for x in ['train', 'val']}
dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=4,
                                             shuffle=True, num_workers=4)              for x in ['train', 'val']}
dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'val']}
class_names = image_datasets['train'].classesdef train_model(model, criterion, optimizer, scheduler, num_epochs=25):
    since = time.time()

    best_model_wts = copy.deepcopy(model.state_dict())
    best_acc = 0.0

    for epoch in range(num_epochs):
        print('Epoch {}/{}'.format(epoch, num_epochs - 1))
        print('-' * 10)        # Each epoch has a training and validation phase
        for phase in ['train', 'val']:            if phase == 'train':
                scheduler.step()
                model.train(True)  # Set model to training mode
            else:
                model.train(False)  # Set model to evaluate mode

            running_loss = 0.0
            running_corrects = 0
            # Iterate over data.
            for data in dataloaders[phase]:                # get the inputs
                inputs, labels = data

                inputs, labels = Variable(inputs), Variable(labels)                # zero the parameter gradients
                optimizer.zero_grad()                # forward
                outputs = model(inputs)
                _, preds = torch.max(outputs.data, 1)
                loss = criterion(outputs, labels)                # backward + optimize only if in training phase
                if phase == 'train':
                    loss.backward()
                    optimizer.step()                # statistics
                running_loss += loss.data[0] * inputs.size(0)
                running_corrects += torch.sum(preds == labels.data)

            epoch_loss = running_loss / dataset_sizes[phase]
            epoch_acc = running_corrects / dataset_sizes[phase]

            print('{} Loss: {:.4f} Acc: {:.4f}'.format(
                phase, epoch_loss, epoch_acc))            # deep copy the model
            if phase == 'val' and epoch_acc > best_acc:
                best_acc = epoch_acc
                best_model_wts = copy.deepcopy(model.state_dict())
        print()
    time_elapsed = time.time() - since
    print('Training complete in {:.0f}m {:.0f}s'.format(
        time_elapsed // 60, time_elapsed % 60))
    print('Best val Acc: {:4f}'.format(best_acc))    # load best model weights
    model.load_state_dict(best_model_wts)    return modeldef visualize_model(model, num_images=6):
    images_so_far = 0
    fig = plt.figure()    for i, data in enumerate(dataloaders['val']):
        inputs, labels = data
        inputs, labels = Variable(inputs), Variable(labels)
        outputs = model(inputs)
        _, preds = torch.max(outputs.data, 1)        for j in range(inputs.size()[0]):
            images_so_far += 1
            ax = plt.subplot(num_images//2, 2, images_so_far)
            ax.axis('off')
            ax.set_title('predicted: {}'.format(class_names[preds[j]]))            if images_so_far == num_images:                return# Finetuning the convnetif __name__ ==  '__main__':
    model_ft = models.resnet18(pretrained=True)
    num_ftrs = model_ft.fc.in_features
    model_ft.fc = nn.Linear(num_ftrs, 2)
    criterion = nn.CrossEntropyLoss()    # Observe that all parameters are being optimized
    optimizer_ft = optim.SGD(model_ft.parameters(), lr=0.001, momentum=0.9)    # Decay LR by a factor of 0.1 every 7 epochs
    exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1)
    model_ft = train_model(model_ft, criterion, optimizer_ft, exp_lr_scheduler, num_epochs=1)

    visualize_model(model_ft)
    plt.ioff()
    plt.show()
本文参与?腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2018-06-28,如有侵权请联系?cloudcommunity@tencent.com 删除

本文分享自 IT派 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与?腾讯云自媒体同步曝光计划? ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 简介:
  • 数据集
  • 训练模型
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档
http://www.vxiaotou.com