前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >tensorflow入门:Neural Network for mnist

tensorflow入门:Neural Network for mnist

作者头像
Steve Wang
发布2019-05-26 15:03:03
4770
发布2019-05-26 15:03:03
举报
文章被收录于专栏:从流域到海域

我们使用tensorflow实现类似于上图的简单深度网络,用于mnist数据集预测模型的实现。理论方面不再赘述。

实现如下:

代码语言:javascript
复制
import tensorflow as tf
import random
import matplotlib.pyplot as plt

from tensorflow.examples.tutorials.mnist import input_data

tf.set_random_seed(1)

mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)

# define hyperparameters
learning_rate = 0.001
training_epoches = 15
batch_size = 100

# input place holders

X = tf.placeholder(tf.float32, [None, 784]) # 28*28 = 784
Y = tf.placeholder(tf.float32, [None, 10]) # 10 number of classes

# weight & bias for layers
W1 = tf.Variable(tf.random_normal([784, 256]))
b1 = tf.Variable(tf.random_normal([256]))
L1 = tf.nn.relu(tf.matmul(X, W1) + b1)

W2 = tf.Variable(tf.random_normal([256, 256]))
b2 = tf.Variable(tf.random_normal([256]))
L2 = tf.nn.relu(tf.matmul(L1, W2)+ b2)

W3 = tf.Variable(tf.random_normal([256, 10]))
b3 = tf.Variable(tf.random_normal([10]))
L3 = tf.matmul(L2, W3) + b3

# define loss & optimizer
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(logits=L3, labels=Y))
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)

with tf.Session() as sess:
    # initialize global variable
    sess.run(tf.global_variables_initializer())
    #train the modal
    for epoch in range(training_epoches):
        avg_cost = 0
        total_batch = int(mnist.train.num_examples / batch_size)
        
        for i in range(total_batch):
            batch_xs, batch_ys = mnist.train.next_batch(batch_size)
            feed_dict = {X: batch_xs, Y: batch_ys}
            c, _ = sess.run([cost, optimizer], feed_dict=feed_dict)
            avg_cost += c / total_batch
            
        print('Epoch:', '%04d' %(epoch + 1), 'cost=', '{:.9f}'.format(avg_cost))
        
    print('Learning finished')
    
    correct_prediction = tf.equal(tf.argmax(L3, 1), tf.argmax(Y, 1))
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
    print('Accuracy: ', sess.run(accuracy, feed_dict={X: mnist.test.images, Y: mnist.test.labels}))

    # Choose one and predict
    r = random.randint(0, mnist.test.num_examples - 1)
    print("Actual label: ", sess.run(tf.argmax(mnist.test.labels[r: r+1], 1)))
    print("Prediction: ", sess.run(tf.argmax(L3, 1), feed_dict={X: mnist.test.images[r: r+1]}))

    plt.imshow(mnist.test.images[r: r+1].reshape(28, 28), cmap='Greys', interpolation='nearest')
    plt.show()
代码语言:javascript
复制
Extracting MNIST_data/train-images-idx3-ubyte.gz
Extracting MNIST_data/train-labels-idx1-ubyte.gz
Extracting MNIST_data/t10k-images-idx3-ubyte.gz
Extracting MNIST_data/t10k-labels-idx1-ubyte.gz
Epoch: 0001 cost= 150.137712487
Epoch: 0002 cost= 39.704215820
Epoch: 0003 cost= 25.038394092
Epoch: 0004 cost= 17.644208637
Epoch: 0005 cost= 12.640602860
Epoch: 0006 cost= 9.425256237
Epoch: 0007 cost= 6.992917965
Epoch: 0008 cost= 5.167070087
Epoch: 0009 cost= 3.878480178
Epoch: 0010 cost= 2.969947652
Epoch: 0011 cost= 2.171637326
Epoch: 0012 cost= 1.684254840
Epoch: 0013 cost= 1.305353469
Epoch: 0014 cost= 0.982698343
Epoch: 0015 cost= 0.853588527
Learning finished
Accuracy:  0.9444
Actual label:  [9]
Prediction:  [9]
本文参与?腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2019年02月15日,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客?前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与?腾讯云自媒体同步曝光计划? ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档
http://www.vxiaotou.com