前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >FCOS : 找到诀窍了,anchor-free的one-stage目标检测算法也可以很准 | ICCV 2019

FCOS : 找到诀窍了,anchor-free的one-stage目标检测算法也可以很准 | ICCV 2019

原创
作者头像
VincentLee
修改2020-02-20 09:49:03
1.1K0
修改2020-02-20 09:49:03
举报

论文提出anchor-free和proposal-free的one-stage的目标检测算法FCOS,不再需要anchor相关的的超参数,在目前流行的逐像素(per-pixel)预测方法上进行目标检测,根据实验结果来看,FCOS能够与主流的检测算法相比较,达到SOTA,为后面的大热的anchor-free方法提供了很好的参考 ?

来源:【晓飞的算法工程笔记】 公众号

论文: FCOS: Fully Convolutional One-Stage Object Detection

Introduction


? 大多目标检测网络都是anchor-based,虽然anchor能带来很大的准确率提升,但也会带来一些缺点:

  • 准确率对anchor的尺寸、长宽比和数量较为敏感,这些超参都会人工细调
  • anchor的尺寸和长宽是固定的,如果目标的相关属性相差较大,会比较难预测
  • 为了高召回,通常会使用密集的anchor布满输入,大多为负样本,导致训练不平衡
  • anchor需要如IOU的复杂计算

? 近期,FCNs在各视觉任务中都有不错的表现,但目标检测由于anchor的存在,不能进行纯逐像素预测,于是论文抛弃anchor,提出逐像素全卷积目标检测网络FCOS网络,总结如下:

  • 效仿前期的FCNs-based网络,如DenseBox,每个像素回归一个4D向量指代预测框相对于当前像素位置的偏移,如图1左
  • 为了预测不同尺寸的目标,DenseBox会缩放或剪裁生成图像金字塔进行预测,而且当目标重叠时,会出现像素不知道负责预测哪个目标的问题,如图1右。在对问题进行研究后,论文发现使用FPN能解决以上问题,后面会细讲
  • 由于预测的结果会产生许多低质量的预测结果,论文采用center-ness分支来预测当前像素与对应目标中心点的偏离情况,用来去除低质量预测结果以及进行NMS

Our Approach


Fully Convolutional One-Stage Object Detector

? 让$F_i\in \mathbb{R}^{H\times W\times C}$为层$i$的特征图,$s$为层的总stride,输入的GT为${B_i}$,$B_i=(x_0^{(i)},y_0^{(i)},x_1^{(i)},y_1^{(i)},c^{(i)})\in \mathbb{R}^4\times {1,2...C }$分别为box的左上角和右下角坐标以及类别,$C$为类别数。特征图$F_i$的每个位置$(x,y)$,可以通过$(\lfloor\frac{s}{2}\rfloor + xs, \lfloor\frac{s}{2}\rfloor + ys)$映射回原图,FCOS直接预测相对于当前像素的box位置,而不是anchor的那样将像素作为中心再回归

? 当像素$(x,y)$落在GT中则认为是正样本,将类别$c^$设置为目标类别,否则设置为0。除了类别,还有4D向量$t^=(l^,t^,r^,b^)$作为回归目标,分别为box的四条边与像素的距离。当像素落在多个GT中时,直接选择区域最小的作为回归目标。相对于anchor-based的IOU判断,FCOS能生成更多的正样本来训练回归器

  • Network Outputs? 网络最终输出80D分类标签向量$p$和4D box坐标向量$t=(l,t,r,b)$,训练$C$个二分类器而不是多分类器,在最后特征后面分别接4个卷积层用于分类和定位分支,在定位分支使用$exp(x)$保证结果为正,整体输出比anchor-based少9x倍
  • Loss Function

? $L{cls}$为focal loss,$L{reg}$为UnitBox中的IOU loss,$N_{pos}$为正样本数,$\lambda$为平衡权重,公式2计算特征图上的所有结果

  • Inference? 对于输入图片,推理得到特征图$Fi$的分类分数$p{x,y}$以及回归预测$t{x,y}$,然后取$p{x,y}>0.05$的作为正样本,公共公式1得到预测框位置

Multi-level Prediction with FPN for FCOS

? 下面讲下FCOS如何使用FPN来解决之前提到的问题:

  • 由于large stride,通常最后的特征图都会面临较低的最大可能召回(best possible recall, BPR)问题。在anchor based detector中,可以通过降低IOU阈值来弥补,而实验发现,FCN-based的FCOS本身就能在large stride情况下还有更好的BPR,加上FPN,BPR则会更高
  • 目标框重叠会导致难解的歧义,例如不知道像素对应哪个回归目标,论文使用多层预测来解决这个问题,甚至FCN-based效果比anchor-based要好

? 如图2,FPN使用${P_3,P_4,P_5,P_6,P_7 }$层特征,其中$P_3$、$P_4$和$P_5$分别通过$C_3$、$C_4$和$C_5$的$1\times 1$卷积以及top-down connection生成,$P_6$和$P_7$则是分别通过$P_5$和$P_6$进行stride为2的$1\times1$卷积生成,各特征的stride分别为8,16,32,64和128

? anchor-based方法对不同的层使用不同的大小,论文则直接限制每层的bbox回归范围。首先计算$l^$,$t^$,$r^$和$b^$,如果满足$max(l^,t^,r^8,b^)>m_i$或$max(l^,t^,r^8,b^)<m_{i-1}$,则设为负样本,不需要进行bbox回归。$m$为层$i$的最大回归距离,$m_2$,$m_3$,$m_4$,$m_5$,$m_6$和$m_7$分别为0,64,128,256,512和$\infty$。如果在这样设置下,像素仍存在歧义,则选择区域最小的作为回归目标,从实验来看,这样设定的结果很好

? 最后,不同层间共享head,不仅减少参数,还能提高准确率。而由于不同的层负责不同的尺寸,所以不应该使用相同的head,因此,论文将$exp(x)$改为$exp(s_ix)$,添加可训练的标量$s_i$来自动调整不同层的指数基底

Center-ness for FCOS

? 使用FPN后,FCOS与anchor-based detector仍然存在差距,主要来源于低质量的预测box,这些box的大多由距离目标中心点相当远的像素产生。因此,论文提出新的独立分支来预测像素的center-ness,用来评估像素与目标中心点的距离

? center-ness的gt计算如公式3,取值$(0,1]$,使用二值交叉熵进行训练。在测试时,最终的分数是将分类分数与center-ness进行加权,低质量的box分数会降低,最后可能通过NMS进行过滤

? center-ness的另一种形式是在训练时仅用目标框的中心区域像素作为正样本,这会带来额外的超参数,目前已经验证性能会更好

Experiments


Ablation Study

  • Multi-level Prediction with FPN

? best possible recall(BPR)定义为检测器能够回归的gt比例,如果gt被赋予某个预测结果,即为能够回归。从表1看来,不用FPN的FCOS直接有95.55%,而anchor-based的经典实现只有86.82%,加上FPN后就提高到98.40%

? 在原始FCOS中,正样本中歧义目标的比例为23.16%,使用FPN后能够降低到7.14%。这里论文提到,同类别目标的歧义是没关系的,因为不管预测为哪个目标,都是正确的,预测漏的目标可以由其它更靠近他的像素来预测。所以,只考虑不同类别的歧义比例大概为17.84%,使用FPN后可降为3.75%。而在最终结果中,仅2.3%的框来自于歧义像素,考虑不同类别的歧义,则仅有1.5%的,所以歧义不是FCN-based FCOS的问题

  • With or Without Center-ness

? center-ness分支能够将AP从33.5%升为37.1%,比直接从回归结果中计算的方式要好

  • FCOS vs. Anchor-based Detectors

? 相对于RetinaNet,之前FCOS使用了分组卷积(GN)和使用$P_5$来产生$P_6$和$P_7$,为了对比,去掉以上的改进进行实验,发现准确率依旧比anchor-based要好

  • Comparison with State-of-the-art Detectors

Extensions on Region Proposal Networks


? 将anchor-based的RPNs with FPN替换成FCOS,能够显著提高$AR^{100}$和$AR^{1k}$

Class-agnostic Precision-recall Curves


Visualization for Center-ness


CONCLUSION


? 论文提出anchor-free和proposal-free的one-stage的目标检测算法FCOS,不再需要anchor相关的的超参数,在目前流行的逐像素(per-pixel)预测方法上进行目标检测,根据实验结果来看,FCOS能够与主流的检测算法相比较,达到SOTA,为后面的大热的anchor-free方法提供了很好的参考

如果本文对你有帮助,麻烦点个赞或在看呗~

更多内容请关注 微信公众号【晓飞的算法工程笔记】

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • Introduction
  • Our Approach
    • Fully Convolutional One-Stage Object Detector
      • Multi-level Prediction with FPN for FCOS
        • Center-ness for FCOS
        • Experiments
          • Ablation Study
          • Extensions on Region Proposal Networks
          • Class-agnostic Precision-recall Curves
          • Visualization for Center-ness
          • CONCLUSION
          相关产品与服务
          对象存储
          对象存储(Cloud Object Storage,COS)是由腾讯云推出的无目录层次结构、无数据格式限制,可容纳海量数据且支持 HTTP/HTTPS 协议访问的分布式存储服务。腾讯云 COS 的存储桶空间无容量上限,无需分区管理,适用于 CDN 数据分发、数据万象处理或大数据计算与分析的数据湖等多种场景。
          领券
          问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档
          http://www.vxiaotou.com