前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >平面中判断点在三角形内算法(重心法)

平面中判断点在三角形内算法(重心法)

作者头像
charlee44
发布2021-06-17 20:55:08
1.7K0
发布2021-06-17 20:55:08
举报
文章被收录于专栏:代码编写世界代码编写世界

目录

1. 概述

在文章《判断点是否在三角形内》中还提到了一种判断点在三角形内外的算法——重心法。这种算法同样用到了三角形的空间向量方程,但是值得注意的是,这种算法却只能判断平面中点在三角形的内外关系(已知空间向量方程,是可以判断三维空间关系的:空间中判断点在三角形内算法(方程法))。

2. 详论

2.1. 原理

重心法的推导过程与空间中判断点在三角形内算法(方程法))的推导过程比较相似。对于三个顶点为V0,V1,V2组成的空间三角形,对于三角形内的任一点P,有如下参数方程:

[\vec{P} = (1 - u - v) \vec{V_0} + u \vec{V_1} + v \vec{V_2} ]

变换位置,我们可以将其调整为:

[\vec{V_0P} = u(\vec{V_0V_1}) + v(\vec{V_0V_2}) ]

将上式分别点乘

\vec{V_0V_1}

\vec{V_0V_2}

,有:

[\begin{cases} \vec{V_0P} \cdot \vec{V_0V_1} = u(\vec{V_0V_1 \cdot \vec{V_0V_1}}) + v(\vec{V_0V_2} \cdot \vec{V_0V_1}) \ \vec{V_0P} \cdot \vec{V_0V_2} = u(\vec{V_0V_1} \cdot \vec{V_0V_2}) + v(\vec{V_0V_2} \cdot \vec{V_0V_2}) \ \end{cases} ]

很显然,这是个2行2列的线性方程组,通过克莱姆法则来求解:

[\begin{cases} D = (\vec{V_0V_1 \cdot \vec{V_0V_1}}) * (\vec{V_0V_2} \cdot \vec{V_0V_2}) - (\vec{V_0V_2} \cdot \vec{V_0V_1}) * (\vec{V_0V_1} \cdot \vec{V_0V_2}) \ D1 = (\vec{V_0P} \cdot \vec{V_0V_1}) * (\vec{V_0V_2} \cdot \vec{V_0V_2}) - (\vec{V_0V_2} \cdot \vec{V_0V_1}) * (\vec{V_0P} \cdot \vec{V_0V_2}) \ D2 = (\vec{V_0V_1 \cdot \vec{V_0V_1}}) * (\vec{V_0P} \cdot \vec{V_0V_2}) - (\vec{V_0P} \cdot \vec{V_0V_1}) * (\vec{V_0V_1} \cdot \vec{V_0V_2}) \ \end{cases} ]

[\begin{cases} u = D1 / D \ v = D2 / D \ \end{cases} ]

2.2. 实现

详细的代码实现如下:

代码语言:javascript
复制
//空间三角形
//按照逆时针顺序插入值并计算法向量
template <class T>
class Triangle
{
public:
    Vec3<T> v0;
    Vec3<T> v1;
    Vec3<T> v2;

    Triangle()
    {

    }

    Triangle(Vec3<T> v0, Vec3<T> v1, Vec3<T> v2)
    {
        this->v0 = v0;
        this->v1 = v1;
        this->v2 = v2;     
    }

    void Set(Vec3<T> v0, Vec3<T> v1, Vec3<T> v2)
    {
        this->v0 = v0;
        this->v1 = v1;
        this->v2 = v2;    
    }


    // 判断平面点P是否在平面三角形内(重心法)
    bool PointInTriangle2D(Vec3<T>& P)
    {
        auto v01 = v1 - v0 ;
        auto v02 = v2 - v0 ;
        auto v0p = P - v0 ;

        double dot00 = v01 * v01 ;
        double dot01 = v01 * v02 ;
        double dot02 = v01 * v0p ;
        double dot11 = v02 * v02 ;
        double dot12 = v02 * v0p ;

        double D = (dot00 * dot11 - dot01 * dot01);
        if(D == 0.0)
        {
            return false;
        }
        double inverDeno = 1 / D ;

        double u = (dot11 * dot02 - dot01 * dot12) * inverDeno ;
        if (u < 0 || u > 1)
        {
            return false ;
        }

        double v = (dot00 * dot12 - dot01 * dot02) * inverDeno ;
        if (v < 0 || v > 1)
        {
            return false ;
        }

        return u + v <= 1 ;
    }

};

2.3. 总结

本质上,这个算法与空间中判断点在三角形内算法(方程法)是同一种算法的不同推导,都是通过空间三角形中点的向量方程来求解的,但是是采用了不同的解法。不过为什么一个可以判断空间关系,一个只能判断平面关系呢?关键在于点是否能让向量方程成立,这个求解算法可以求解u,v,但没有保证空间内的向量方程能够成立。

3. 参考

  1. 判断点是否在三角形内
  2. 空间中判断点在三角形内算法(方程法))

详细代码

本文参与?腾讯云自媒体分享计划,分享自作者个人站点/博客。
原始发表:2021-06-12 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客?前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与?腾讯云自媒体分享计划? ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 1. 概述
  • 2. 详论
    • 2.1. 原理
      • 2.2. 实现
        • 2.3. 总结
        • 3. 参考
        领券
        问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档
        http://www.vxiaotou.com