前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >从M1、Grace再到华为,缝合风为何会在芯片大厂中流行

从M1、Grace再到华为,缝合风为何会在芯片大厂中流行

原创
作者头像
beyondma
发布2022-04-03 17:58:23
5670
发布2022-04-03 17:58:23
举报
文章被收录于专栏:Rust学习专栏Rust学习专栏

历史不会简单重复,但总是惊人的相似。之前在电影、游戏等人文领域流行的缝合风,似乎也对IT界芯片设计师们产生了影响,虽然去年华为提出的双芯叠加方案还被全网群嘲,而上周英伟达最新的发布会上,黄仁勋发布的Grace CPU Superchip却成了真香的作品,不过这款芯片其实就是用两块Grace粘在一起而形成的。

而上个月中旬苹果春晚上发布的M1 Ultra也是同样的配方,同一个套路,他们直接把两块M1 MAX拼到一块,就这样一款新的“伟大”芯片就诞生了。

当然笔者这里对于此类缝合作品并不抱有偏见,毕竟像“原神”那样的作品在上市之初也被指责是缝合怪,但这丝毫不影响米哈游目前的大杀四方,让来自于各个国家的粉丝都疯狂氪金,不过笔者还是要指出这种缝合式芯片的大行其道,其实是缺芯潮不断持续而产生的影响,由于科技业界忙于眼前的苟且,创新后劲不足,对新设计、新理念缺乏信心,在这种情况下考虑到原来的M1 MAX已经大获成功了,而且台积电的制造经验也成熟,把两块已经成熟的芯片粘在一起,风险要远比造全新的芯片要小得多。

其实这股缝合风从苹果的初代M1就开始了,只是初代的M1的目标是把CPU、GPU、内存缝合到一起,由于使用的都是片内内存,所以理论上讲M1系列的全族芯片都是不支持内存扩展的,要换只能把CPU、GPU打包一起换掉。当然缝合方案的影响不只于此,下面我们就来分析一下这种芯片缝合方案的具体情况。

内存带宽极高,CPU和GPU通信能力超强

由于内存完全被芯片集成,内存与CPU之间的通信也就不用经过主板进行转手了,因此目前我们可以看到英伟达的Grace CPU的内存带宽可以达到惊人每秒1TB,而苹果M1 Ultra也是不遑多让,有每秒800GB的成绩。这是我们一般主板接入内存的普通X86玩家所不能想象的效果,可见甩了主板这个中间商以后,其实内存的速度还是能打的。

另外由于M1系列缝合式芯片内存、GPU都是由CPU进行统一管理,也就是说内存与显存是共享的,这就可以大大提高CPU与GPU的通信效率,从而增强图像处理、3D建模等任务的处理效率。由于英伟达Grace尚未投产,具体细节还不多,因此这里这种片内共享所带来的加成效应,我们继续以苹果M1举例,我们知道苹果初代M1显存与内存加在一起只有16G,而M1前一代的MAC PRO内存是128G,光是显存都有都与M1持平16G,不过搭载M1的入门版MAC在进行图像处理等任务时,却要比上一代顶配的MAC还要强出近一倍。而本次发布的M1 MAX更是直接将内存带宽提升到初代M1的6位,其性能加强的程度也就可想而知了。

正如上文所说英伟达最近发布处理器中用到的缝合技术NVlink,其实采用了和苹果比较类似的思路。未来不排除英特尔和AMD也会跟进,今后内存也很可能不会再是一个单独的元件了,被集成起来也会是一种趋势。

AI算力史诗级提升,元宇宙可期

在AI优化方面,现在看来未来主流的Tensor也就是矢量的主流格式正在由FP32向FP8。我们看到在英伟达最新的显卡H100中,主打的矢量格式就已经明确是FP8了。

不管是AI计算,还是元宇宙概念,其最基本的计算单元都是矢量。以深度神经网络为例,神经元可以抽象为对于输入矢量乘以权重以表示信号强度乘积加总,再由ReLU、Sigmoid等应用激活函数调节,本质是将输入数据与权重矩阵相乘,并输入激活函数,对于有三个输入数据和两个全连接神经元的单层神经网络而言,需要把输入和权重进行六次相乘,经典CNN中无论GEMM的矩阵乘法运算还是卷积地乘加计算都是使用fp32也就是用32位字长的数字来表示的,在这种情况下如果我们可以使用fp8来作为输入表示此以过程,其计算量至少可以下降75%。尤其在图像处理的场景下,通常由fp32到fp8的转换,如果方案得当,其精度损失是低于1%的。因此在针对fp8类型的计算加速也就是业界都在探讨的话题。

由于之前英特尔去年至强三代中引入的VNNI已经针对FP8进行过加速优化,据笔者所知咱们国内某大厂在实时生成用户3D头像模型的应用中,在VNNI的支持下可以在精度降低1%的情况下,性能还提升了4.23倍。而这次英伟达的发布会上,黄仁勋的说法也为FP8投上了关键一票。

RISC的自带光环,超强的译码器

目前处理器的流水线一般分为取指、译码、取操作数等等环节,其中译码是一个非常重要的环节。译码器方面ARM架构的精简指令集的确有一定优势,由于指令都是定长的,完全可以做出高效的多路译码器以提升效率。据笔者所知之前初代M1应该是四路译码,目前的M1 MAX和Ultra都是6路指令解码器,8?op发射宽度,6路分配、10路执行端口的指标。但是英特尔和AMD想用缝合方案的话,就需要实现像M1 Ultra这么强的译码器,但由于X86指令集是变长的,因此X86芯片的译码器一般都先按短码进行翻译,遇差错再返工,这也就很难在相同的功耗下达到很强的译码效率。

未来趋势-打破指令集之间的墙

在英特尔IDM2.0的战略当中有重要的一个原则,就是敞开大门,全面接收各种芯片的订单,同时也可以考虑在同一芯片中集成多种不同指令集的核心,这可能终极的缝合目标,也就是同一块芯片中可以由英特尔的CPU当大核,ARM的CPU当小核,AMD的显卡当GPU的神奇组合。

这种趋势在英特尔在去年发布的Alder Lake处理器中搭建的Thread Director上已经显出端倪。Thread Director就是这样一种软、硬结合的核心调度方案,英特尔的做法是在处理器中集成了一个专用的MCU,用来监控当前处理器内核的运行情况,能够监测到每个线程的特征,比如它运行什么样的指令集、它的性能需求如何等等。在收集完信息之后,MCU会将收集到的信息反馈给操作系统,再次操作系统把这些信息与线程调度信息相结合,判断是否应该将线程转移到别的核心上。如果与操作系统结合的好话,那么一轮调度信息采集工作仅需要30微秒就能完成,而传统方案调度器可能需要100多毫秒才能判断出结论。而据笔者所知Alder Lake上集成的这颗调度用的MCU就是RISC-V的核心,一切就是这么奇妙。

天下大势合久必分,分久必合,因此缝合芯片,也符合现在芯片行业的发展趋势,不过这种缝合这款处理器如何在虚拟化的云环境中,为不同用户提供服务,并进行严格的隔离可能也是一个难点,但是可以肯定的是英伟达、英特尔和苹果的接连站台,缝合式芯片的未来可期。

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档
http://www.vxiaotou.com