前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >如何保证集合是线程安全的? ConcurrentHashMap如何实现高效地线程安全?

如何保证集合是线程安全的? ConcurrentHashMap如何实现高效地线程安全?

原创
作者头像
灬沙师弟
发布2022-10-07 17:15:59
4240
发布2022-10-07 17:15:59
举报
文章被收录于专栏:Java面试教程Java面试教程

我在之前两讲介绍了Java集合框架的典型容器类,它们绝大部分都不是线程安全的,仅有的线程安全实现,比如Vector、Stack,在性能方面也远不尽如人意。幸好Java语言提供了

并发包(java.util.concurrent),为高度并发需求提供了更加全面的工具支持。

今天我要问你的问题是,如何保证容器是线程安全的?ConcurrentHashMap如何实现高效地线程安全?

典型回答

Java提供了不同层面的线程安全支持。在传统集合框架内部,除了Hashtable等同步容器,还提供了所谓的同步包装器(Synchronized Wrapper),我们可以调用Collections工

具类提供的包装方法,来获取一个同步的包装容器(如Collections.synchronizedMap),但是它们都是利用非常粗粒度的同步方式,在高并发情况下,性能比较低下。

另外,更加普遍的选择是利用并发包提供的线程安全容器类,它提供了:

各种并发容器,比如ConcurrentHashMap、CopyOnWriteArrayList。

各种线程安全队列(Queue/Deque),如ArrayBlockingQueue、SynchronousQueue。

各种有序容器的线程安全版本等。

具体保证线程安全的方式,包括有从简单的synchronize方式,到基于更加精细化的,比如基于分离锁实现的ConcurrentHashMap等并发实现等。具体选择要看开发的场景需求,

总体来说,并发包内提供的容器通用场景,远优于早期的简单同步实现。

考点分析

谈到线程安全和并发,可以说是Java面试中必考的考点,我上面给出的回答是一个相对宽泛的总结,而且ConcurrentHashMap等并发容器实现也在不断演进,不能一概而论。

如果要深入思考并回答这个问题及其扩展方面,至少需要:

理解基本的线程安全工具。

理解传统集合框架并发编程中Map存在的问题,清楚简单同步方式的不足。

梳理并发包内,尤其是ConcurrentHashMap采取了哪些方法来提高并发表现。

最好能够掌握ConcurrentHashMap自身的演进,目前的很多分析资料还是基于其早期版本。

今天我主要是延续专栏之前两讲的内容,重点解读经常被同时考察的HashMap和ConcurrentHashMap。今天这一讲并不是对并发方面的全面梳理,毕竟这也不是专栏一讲可以介

绍完整的,算是个开胃菜吧,类似CAS等更加底层的机制,后面会在Java进阶模块中的并发主题有更加系统的介绍。

知识扩展

1.为什么需要ConcurrentHashMap?

Hashtable本身比较低效,因为它的实现基本就是将put、get、size等各种方法加上“synchronized”。简单来说,这就导致了所有并发操作都要竞争同一把锁,一个线程在进行同

步操作时,其他线程只能等待,大大降低了并发操作的效率。

前面已经提过HashMap不是线程安全的,并发情况会导致类似CPU占用100%等一些问题,那么能不能利用Collections提供的同步包装器来解决问题呢?

看看下面的代码片段,我们发现同步包装器只是利用输入Map构造了另一个同步版本,所有操作虽然不再声明成为synchronized方法,但是还是利用了“this”作为互斥的mutex,没

有真正意义上的改进!

private satic class SynchronizedMap<K,V>

如何保证集合是线程安全的? ConcurrentHashMap如何实现高效地线程安全?

implements Map<K,V>, Serializable {

private fnal Map<K,V> m; // Backing Map

fnal Object mutex; // Object on which to synchronize

// …

public int size() {

synchronized (mutex) {return m.size();}

}

// …

}

所以,Hashtable或者同步包装版本,都只是适合在非高度并发的场景下。

2.ConcurrentHashMap分析

我们再来看看ConcurrentHashMap是如何设计实现的,为什么它能大大提高并发效率。

首先,我这里强调,ConcurrentHashMap的设计实现其实一直在演化,比如在Java 8中就发生了非常大的变化(Java 7其实也有不少更新),所以,我这里将比较分析结构、实现机

制等方面,对比不同版本的主要区别。

早期ConcurrentHashMap,其实现是基于:

分离锁,也就是将内部进行分段(Segment),里面则是HashEntry的数组,和HashMap类似,哈希相同的条目也是以链表形式存放。

HashEntry内部使用volatile的value字段来保证可见性,也利用了不可变对象的机制以改进利用Unsafe提供的底层能力,比如volatile access,去直接完成部分操作,以最优化

性能,毕竟Unsafe中的很多操作都是JVM intrinsic优化过的。

你可以参考下面这个早期ConcurrentHashMap内部结构的示意图,其核心是利用分段设计,在进行并发操作的时候,只需要锁定相应段,这样就有效避免了类似Hashtable整体同

步的问题,大大提高了性能。

在构造的时候,Segment的数量由所谓的concurrentcyLevel决定,默认是16,也可以在相应构造函数直接指定。注意,Java需要它是2的幂数值,如果输入是类似15这种非幂

值,会被自动调整到16之类2的幂数值。

具体情况,我们一起看看一些Map基本操作的源码,这是JDK 7比较新的get代码。针对具体的优化部分,为方便理解,我直接注释在代码段里,get操作需要保证的是可见性,所以

并没有什么同步逻辑。

public V get(Object key) {

Segment<K,V> s; // manually integrate access methods to reduce overhead

HashEntry<K,V>[] tab;

int h = hash(key.hashCode());

//利用位操作替换普通数学运算

long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE;

// 以Segment为单位,进行定位

// 利用Unsafe直接进行volatile access

if ((s = (Segment<K,V>)UNSAFE.getObjectVolatile(segments, u)) != null &&

(tab = s.table) != null) {

//省略

}

return null;

}

而对于put操作,首先是通过二次哈希避免哈希冲突,然后以Unsafe调用方式,直接获取相应的Segment,然后进行线程安全的put操作:

public V put(K key, V value) {

Segment<K,V> s;

if (value == null)

throw new NullPointerException();

// 二次哈希,以保证数据的分散性,避免哈希冲突

int hash = hash(key.hashCode());

int j = (hash >>> segmentShift) & segmentMask;

if ((s = (Segment<K,V>)UNSAFE.getObject // nonvolatile; recheck

(segments, (j << SSHIFT) + SBASE)) == null) // in ensureSegment

s = ensureSegment(j);

return s.put(key, hash, value, false);

}

其核心逻辑实现在下面的内部方法中:

fnal V put(K key, int hash, V value, boolean onlyIfAbsent) {

// scanAndLockForPut会去查找是否有key相同Node

// 无论如何,确保获取锁

HashEntry<K,V> node = tryLock() ? null :

scanAndLockForPut(key, hash, value);

V oldValue;

try {

HashEntry<K,V>[] tab = table;

int index = (tab.length - 1) & hash;

HashEntry<K,V> frs = entryAt(tab, index);

for (HashEntry<K,V> e = frs;;) {

if (e != null) {

K k;

// 更新已有value...

}

else {

// 放置HashEntry到特定位置,如果超过阈值,进行rehash

// ...

}

}

} fnally {

unlock();

}

return oldValue;

}

所以,从上面的源码清晰的看出,在进行并发写操作时:

ConcurrentHashMap会获取再入锁,以保证数据一致性,Segment本身就是基于ReentrantLock的扩展实现,所以,在并发修改期间,相应Segment是被锁定的。

在最初阶段,进行重复性的扫描,以确定相应key值是否已经在数组里面,进而决定是更新还是放置操作,你可以在代码里看到相应的注释。重复扫描、检测冲突

是ConcurrentHashMap的常见技巧。

我在专栏上一讲介绍HashMap时,提到了可能发生的扩容问题,在ConcurrentHashMap中同样存在。不过有一个明显区别,就是它进行的不是整体的扩容,而是单独

对Segment进行扩容,细节就不介绍了。

另外一个Map的size方法同样需要关注,它的实现涉及分离锁的一个副作用。

试想,如果不进行同步,简单的计算所有Segment的总值,可能会因为并发put,导致结果不准确,但是直接锁定所有Segment进行计算,就会变得非常昂贵。其实,分离锁也限

制了Map的初始化等操作。

所以,ConcurrentHashMap的实现是通过重试机制(RETRIES_BEFORE_LOCK,指定重试次数2),来试图获得可靠值。如果没有监控到发生变化(通过对

比Segment.modCount),就直接返回,否则获取锁进行操作。

下面我来对比一下,在Java 8和之后的版本中,ConcurrentHashMap发生了哪些变化呢?

总体结构上,它的内部存储变得和我在专栏上一讲介绍的HashMap结构非常相似,同样是大的桶(bucket)数组,然后内部也是一个个所谓的链表结构(bin),同步的粒度要

更细致一些。

其内部仍然有Segment定义,但仅仅是为了保证序列化时的兼容性而已,不再有任何结构上的用处。

因为不再使用Segment,初始化操作大大简化,修改为lazy-load形式,这样可以有效避免初始开销,解决了老版本很多人抱怨的这一点。

数据存储利用volatile来保证可见性。

使用CAS等操作,在特定场景进行无锁并发操作。

使用Unsafe、LongAdder之类底层手段,进行极端情况的优化。

先看看现在的数据存储内部实现,我们可以发现Key是fnal的,因为在生命周期中,一个条目的Key发生变化是不可能的;与此同时val,则声明为volatile,以保证可见性。

satic class Node<K,V> implements Map.Entry<K,V> {

fnal int hash;

fnal K key;

volatile V val;

volatile Node<K,V> next;

// …

}

我这里就不再介绍get方法和构造函数了,相对比较简单,直接看并发的put是如何实现的。

fnal V putVal(K key, V value, boolean onlyIfAbsent) { if (key == null || value == null) throw new NullPointerException();

int hash = spread(key.hashCode());

int binCount = 0;

for (Node<K,V>[] tab = table;;) {

Node<K,V> f; int n, i, fh; K fk; V fv;

if (tab == null || (n = tab.length) == 0)

tab = initTable();

else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {

// 利用CAS去进行无锁线程安全操作,如果bin是空的

if (casTabAt(tab, i, null, new Node<K,V>(hash, key, value)))

break;

}

else if ((fh = f.hash) == MOVED)

tab = helpTransfer(tab, f);

else if (onlyIfAbsent // 不加锁,进行检查

&& fh == hash

&& ((fk = f.key) == key || (fk != null && key.equals(fk)))

&& (fv = f.val) != null)

return fv;

else {

V oldVal = null;

synchronized (f) {

// 细粒度的同步修改操作...

}

}

// Bin超过阈值,进行树化

if (binCount != 0) {

if (binCount >= TREEIFY_THRESHOLD)

treeifyBin(tab, i);

if (oldVal != null)

return oldVal;

break;

}

}

}

addCount(1L, binCount);

return null;

}

初始化操作实现在initTable里面,这是一个典型的CAS使用场景,利用volatile的sizeCtl作为互斥手段:如果发现竞争性的初始化,就spin在那里,等待条件恢复;否则利用CAS设

置排他标志。如果成功则进行初始化;否则重试。

请参考下面代码:

private fnal Node<K,V>[] initTable() {

Node<K,V>[] tab; int sc;

while ((tab = table) == null || tab.length == 0) {

// 如果发现冲突,进行spin等待

if ((sc = sizeCtl) < 0)

Thread.yield();

// CAS成功返回true,则进入真正的初始化逻辑

else if (U.compareAndSetInt(this, SIZECTL, sc, -1)) {

try {

if ((tab = table) == null || tab.length == 0) {

int n = (sc > 0) ? sc : DEFAULT_CAPACITY;

@SuppressWarnings("unchecked")

Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];

table = tab = nt;

sc = n - (n >>> 2);

}

} fnally {

sizeCtl = sc;

}

break;

}

}

return tab;

}

当bin为空时,同样是没有必要锁定,也是以CAS操作去放置。

你有没有注意到,在同步逻辑上,它使用的是synchronized,而不是通常建议的ReentrantLock之类,这是为什么呢?现代JDK中,synchronized已经被不断优化,可以不再过分

担心性能差异,另外,相比于ReentrantLock,它可以减少内存消耗,这是个非常大的优势。

与此同时,更多细节实现通过使用Unsafe进行了优化,例如tabAt就是直接利用getObjectAcquire,避免间接调用的开销。

satic fnal <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {

return (Node<K,V>)U.getObjectAcquire(tab, ((long)i << ASHIFT) + ABASE);

}

再看看,现在是如何实现size操作的。阅读代码你会发现,真正的逻辑是在sumCount方法中, 那么sumCount做了什么呢?

fnal long sumCount() {

CounterCell[] as = counterCells; CounterCell a;

long sum = baseCount;

if (as != null) {

for (int i = 0; i < as.length; ++i) {

if ((a = as[i]) != null)

sum += a.value;

}

}

return sum;

}

我们发现,虽然思路仍然和以前类似,都是分而治之的进行计数,然后求和处理,但实现却基于一个奇怪的CounterCell。 难道它的数值,就更加准确吗?数据一致性是怎么保证

的?

satic fnal class CounterCell {

volatile long value;

CounterCell(long x) { value = x; }

}

其实,对于CounterCell的操作,是基于java.util.concurrent.atomic.LongAdder进行的,是一种JVM利用空间换取更高效率的方法,利用了Striped64内部的复杂逻辑。这个东

西非常小众,大多数情况下,建议还是使用AtomicLong,足以满足绝大部分应用的性能需求。

今天我从线程安全问题开始,概念性的总结了基本容器工具,分析了早期同步容器的问题,进而分析了Java 7和Java 8中ConcurrentHashMap是如何设计实现的,希

望ConcurrentHashMap的并发技巧对你在日常开发可以有所帮助。

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
相关产品与服务
容器服务
腾讯云容器服务(Tencent Kubernetes Engine, TKE)基于原生 kubernetes 提供以容器为核心的、高度可扩展的高性能容器管理服务,覆盖 Serverless、边缘计算、分布式云等多种业务部署场景,业内首创单个集群兼容多种计算节点的容器资源管理模式。同时产品作为云原生 Finops 领先布道者,主导开源项目Crane,全面助力客户实现资源优化、成本控制。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档
http://www.vxiaotou.com