前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >[DuckDB] 多核算子并行的源码解析

[DuckDB] 多核算子并行的源码解析

作者头像
HappenLee
发布2023-02-13 09:14:31
1.1K0
发布2023-02-13 09:14:31
举报

DuckDB 是近年来颇受关注的OLAP数据库,号称是OLAP领域的SQLite,以精巧简单,性能优异而著称。笔者前段时间在调研Doris的Pipeline的算子并行方案,而DuckDB基于论文《Morsel-Driven Parallelism: A NUMA-Aware Query Evaluation Framework for the Many-Core Age》实现SQL算子的高效并行化的Pipeline执行引擎,所以笔者花了一些时间进行了学习和总结,这里结合了Mark Raasveldt进行的分享和原始代码来一一剖析DuckDB在执行算子并行上的具体实现。

1. 基础知识

问题1:并行task的数目由什么决定 ?

image.png

Pipeline的核心是:Morsel-Driven,数据是拆分成了小部分的数据。所以并行Task的核心是:能够利用多线程来处理数据,每一个数据拆分为小部分,所以拆分并行的数目由Source决定。

DuckDB在GlobalSource上实现了一个虚函数MaxThread来决定task数目:

image.png

每一个算子的GlobalSource抽象了自己的并行度:

image.png

问题2:并行task的怎么样进行多线程同步:

  • 多线程的竞争只会发生在SinkOperator上,也就是Pipeline的尾端
  • parallelism-aware的算法需要实现在Sink端
  • 其他的非Sink operators (比如:Hash Join Probe, Projection, Filter等), 不需要感知多线程同步的问题

image.png

问题3:DuckDB的是如何抽象接口的:

Sink的Opeartor 定义了两种类型:GlobalState, LocalState

  1. GlobalState: 每个查询的Operator全局只有一个GlobalSinkState,记录全局部分的信息
代码语言:javascript
复制
class PhysicalOperator {
public:
    unique_ptr<GlobalSinkState> sink_state;
  1. LocalState: 每个查询的PipelineExecutor都有一个LocalSinkState,都是局部私有
代码语言:javascript
复制
//! The Pipeline class represents an execution pipeline
class PipelineExecutor {
private:
    //! The local sink state (if any)
    unique_ptr<LocalSinkState> local_sink_state;

后续会详细解析不同的sink之间的LocalState和GlobalState如何配合的,核心部分如下:

image.png

Sink :处理LocalState的数据

Combine:合并LocalState到GlobalState之中

2. 核心算子的并行

这部分进行各个算子的源码剖析,笔者在源码的关键部分加上了中文注释,以方便大家的理解

Sort算子

  • Sink接口:这里需要注意的是DuckDB排序是进行了列转行的工作的,后续读取时需要行转列。Sink这部分相当于实现了部分数据的排序工作。
代码语言:javascript
复制
SinkResultType PhysicalOrder::Sink(ExecutionContext &context, GlobalSinkState &gstate_p, LocalSinkState &lstate_p,
                                   DataChunk &input) const {
    auto &lstate = (OrderLocalSinkState &)lstate_p;
        
      // keys 是排序的列block,payload是输出的排序后数据,这里调用LocalState的SinkChunk,进行数据的转行,
    local_sort_state.SinkChunk(keys, payload);

    // 数据达到内存阈值的时候进行基数排序处理,排序之后的结果存入LocalState的本地的SortedBlock中
    if (local_sort_state.SizeInBytes() >= gstate.memory_per_thread) {
        local_sort_state.Sort(global_sort_state, true);
    }
    return SinkResultType::NEED_MORE_INPUT;
}
  • Combine接口: 加锁,拷贝sorted block到Global State
代码语言:javascript
复制
void PhysicalOrder::Combine(ExecutionContext &context, GlobalSinkState &gstate_p, LocalSinkState &lstate_p) const {
    auto &gstate = (OrderGlobalSinkState &)gstate_p;
    auto &lstate = (OrderLocalSinkState &)lstate_p;
        // 排序剩余内存中不满的数据
    local_sort_state.Sort(*this, external || !local_sort_state.sorted_blocks.empty());

    // Append local state sorted data to this global state
    lock_guard<mutex> append_guard(lock);
    for (auto &sb : local_sort_state.sorted_blocks) {
        sorted_blocks.push_back(move(sb));
    }
}
  • MergeTask:启动核数相同的task来进行Merge (这里可以看出DuckDB对于多线程的使用是很激进的), 这里是通过Event的机制实现的
代码语言:javascript
复制
void Schedule() override {
        auto &context = pipeline->GetClientContext();
        idx_t num_threads = ts.NumberOfThreads();

        vector<unique_ptr<Task>> merge_tasks;
        for (idx_t tnum = 0; tnum < num_threads; tnum++) {
            merge_tasks.push_back(make_unique<PhysicalOrderMergeTask>(shared_from_this(), context, gstate));
        }
        SetTasks(move(merge_tasks));
    }

class PhysicalOrderMergeTask : public ExecutorTask {
public:
    TaskExecutionResult ExecuteTask(TaskExecutionMode mode) override {
        // Initialize merge sorted and iterate until done
        auto &global_sort_state = state.global_sort_state;
        MergeSorter merge_sorter(global_sort_state, BufferManager::GetBufferManager(context));
        
        // 加锁,获取两路,不断进行两路归并,最终完成全局排序。
    while (true) {
        {
            lock_guard<mutex> pair_guard(state.lock);
            if (state.pair_idx == state.num_pairs) {
                break;
            }
            GetNextPartition();
        }
        MergePartition();
    }
        event->FinishTask();
        return TaskExecutionResult::TASK_FINISHED;
    }

聚合算子(这里分析的是Prefetch Agg Operator算子)

  • Sink接口:和Sort算子一样,这里拆分为Group ChunkAggregate Input Chunk,可以理解为代表聚合时的key与value列。注意此时Sink接口上的聚合是在LocalSinkState上完成的。
代码语言:javascript
复制
SinkResultType PhysicalPerfectHashAggregate::Sink(ExecutionContext &context, GlobalSinkState &state,
                                                  LocalSinkState &lstate_p, DataChunk &input) const {
    lstate.ht->AddChunk(group_chunk, aggregate_input_chunk);
}


void PerfectAggregateHashTable::AddChunk(DataChunk &groups, DataChunk &payload) {
    auto address_data = FlatVector::GetData<uintptr_t>(addresses);
    memset(address_data, 0, groups.size() * sizeof(uintptr_t));
    D_ASSERT(groups.ColumnCount() == group_minima.size());

    // 计算group key列对应的entry的位置
    idx_t current_shift = total_required_bits;
    for (idx_t i = 0; i < groups.ColumnCount(); i++) {
        current_shift -= required_bits[i];
        ComputeGroupLocation(groups.data[i], group_minima[i], address_data, current_shift, groups.size());
    }

    // 通过data加上面的entry位置 + tuple的偏移量,计算出对应的内存地址,并进行init
    idx_t needs_init = 0;
    for (idx_t i = 0; i < groups.size(); i++) {
        D_ASSERT(address_data[i] < total_groups);
        const auto group = address_data[i];
        address_data[i] = uintptr_t(data) + address_data[i] * tuple_size;
    }
    RowOperations::InitializeStates(layout, addresses, sel, needs_init);

    // after finding the group location we update the aggregates
    idx_t payload_idx = 0;
    auto &aggregates = layout.GetAggregates();
    for (idx_t aggr_idx = 0; aggr_idx < aggregates.size(); aggr_idx++) {
        auto &aggregate = aggregates[aggr_idx];
        auto input_count = (idx_t)aggregate.child_count;
                // 进行聚合的Update操作
        RowOperations::UpdateStates(aggregate, addresses, payload, payload_idx, payload.size());
    }
}
  • Combine接口: 加锁,merge local hash tableglobal hash table
代码语言:javascript
复制
void PhysicalPerfectHashAggregate::Combine(ExecutionContext &context, GlobalSinkState &gstate_p,
                                           LocalSinkState &lstate_p) const {
    auto &lstate = (PerfectHashAggregateLocalState &)lstate_p;
    auto &gstate = (PerfectHashAggregateGlobalState &)gstate_p;

    lock_guard<mutex> l(gstate.lock);
    gstate.ht->Combine(*lstate.ht);
}
代码语言:javascript
复制
        // local state的地址vector
    Vector source_addresses(LogicalType::POINTER);
       // global state的地址vector
    Vector target_addresses(LogicalType::POINTER);
    auto source_addresses_ptr = FlatVector::GetData<data_ptr_t>(source_addresses);
    auto target_addresses_ptr = FlatVector::GetData<data_ptr_t>(target_addresses);

    // 遍历所有hash table的表,然后进行合并对应能够合并的key
    data_ptr_t source_ptr = other.data;
    data_ptr_t target_ptr = data;
    idx_t combine_count = 0;
    idx_t reinit_count = 0;
    const auto &reinit_sel = *FlatVector::IncrementalSelectionVector();
    for (idx_t i = 0; i < total_groups; i++) {
        auto has_entry_source = other.group_is_set[i];
        // we only have any work to do if the source has an entry for this group
        if (has_entry_source) {
            auto has_entry_target = group_is_set[i];
            if (has_entry_target) {
                // both source and target have an entry: need to combine
                source_addresses_ptr[combine_count] = source_ptr;
                target_addresses_ptr[combine_count] = target_ptr;
                combine_count++;
                if (combine_count == STANDARD_VECTOR_SIZE) {
                    RowOperations::CombineStates(layout, source_addresses, target_addresses, combine_count);
                    combine_count = 0;
                }
            } else {
                group_is_set[i] = true;
                // only source has an entry for this group: we can just memcpy it over
                memcpy(target_ptr, source_ptr, tuple_size);
                // we clear this entry in the other HT as we "consume" the entry here
                other.group_is_set[i] = false;
            }
        }
        source_ptr += tuple_size;
        target_ptr += tuple_size;
    }

        // 做对应的merge操作
    RowOperations::CombineStates(layout, source_addresses, target_addresses, combine_count);

Join算子

  • Sink接口:和Sort算子一样,注意此时Sink接口上的hash 表是在LocalSinkState上完成的。
代码语言:javascript
复制
SinkResultType PhysicalHashJoin::Sink(ExecutionContext &context, GlobalSinkState &gstate_p, LocalSinkState &lstate_p,
                                      DataChunk &input) const {
    auto &gstate = (HashJoinGlobalSinkState &)gstate_p;
    auto &lstate = (HashJoinLocalSinkState &)lstate_p;

    lstate.join_keys.Reset();
    lstate.build_executor.Execute(input, lstate.join_keys);
    // build the HT
    auto &ht = *lstate.hash_table;
    if (!right_projection_map.empty()) {
        // there is a projection map: fill the build chunk with the projected columns
        lstate.build_chunk.Reset();
        lstate.build_chunk.SetCardinality(input);
        for (idx_t i = 0; i < right_projection_map.size(); i++) {
            lstate.build_chunk.data[i].Reference(input.data[right_projection_map[i]]);
        }
                // 构建local state的hash 表
        ht.Build(lstate.join_keys, lstate.build_chunk)

    return SinkResultType::NEED_MORE_INPUT;
}
  • Combine接口: 加锁,拷贝local state的hash表到global state
代码语言:javascript
复制
void PhysicalHashJoin::Combine(ExecutionContext &context, GlobalSinkState &gstate_p, LocalSinkState &lstate_p) const {
    auto &gstate = (HashJoinGlobalSinkState &)gstate_p;
    auto &lstate = (HashJoinLocalSinkState &)lstate_p;
    if (lstate.hash_table) {
        lock_guard<mutex> local_ht_lock(gstate.lock);
        gstate.local_hash_tables.push_back(move(lstate.hash_table));
    }
}
  • MergeTask:启动核数相同的task来进行Hash table的Merge (这里可以看出DuckDB对于多线程的使用是很激进的), 每个任务merge一部分Block(DuckDB之中的行数据,落盘使用)
代码语言:javascript
复制
void Schedule() override {
        auto &context = pipeline->GetClientContext();

        vector<unique_ptr<Task>> finalize_tasks;
        auto &ht = *sink.hash_table;
        const auto &block_collection = ht.GetBlockCollection();
        const auto &blocks = block_collection.blocks;
        const auto num_blocks = blocks.size();
        if (block_collection.count < PARALLEL_CONSTRUCT_THRESHOLD && !context.config.verify_parallelism) {
            // Single-threaded finalize
            finalize_tasks.push_back(
                make_unique<HashJoinFinalizeTask>(shared_from_this(), context, sink, 0, num_blocks, false));
        } else {
            // Parallel finalize
            idx_t num_threads = TaskScheduler::GetScheduler(context).NumberOfThreads();
            auto blocks_per_thread = MaxValue<idx_t>((num_blocks + num_threads - 1) / num_threads, 1);

            idx_t block_idx = 0;
            for (idx_t thread_idx = 0; thread_idx < num_threads; thread_idx++) {
                auto block_idx_start = block_idx;
                auto block_idx_end = MinValue<idx_t>(block_idx_start + blocks_per_thread, num_blocks);
                finalize_tasks.push_back(make_unique<HashJoinFinalizeTask>(shared_from_this(), context, sink,
                                                                           block_idx_start, block_idx_end, true));
                block_idx = block_idx_end;
                if (block_idx == num_blocks) {
                    break;
                }
            }
        }
        SetTasks(move(finalize_tasks));
    }

template <bool PARALLEL>
static inline void InsertHashesLoop(atomic<data_ptr_t> pointers[], const hash_t indices[], const idx_t count,
                                    const data_ptr_t key_locations[], const idx_t pointer_offset) {
    for (idx_t i = 0; i < count; i++) {
        auto index = indices[i];
        if (PARALLEL) {
            data_ptr_t head;
            do {
                head = pointers[index];
                Store<data_ptr_t>(head, key_locations[i] + pointer_offset);
            } while (!std::atomic_compare_exchange_weak(&pointers[index], &head, key_locations[i]));
        } else {
            // set prev in current key to the value (NOTE: this will be nullptr if there is none)
            Store<data_ptr_t>(pointers[index], key_locations[i] + pointer_offset);

            // set pointer to current tuple
            pointers[index] = key_locations[i];
        }
    }
}
  • 并行扫描hash表,进行outer数据的处理:
代码语言:javascript
复制
void PhysicalHashJoin::GetData(ExecutionContext &context, DataChunk &chunk, GlobalSourceState &gstate_p,
                               LocalSourceState &lstate_p) const {
    auto &sink = (HashJoinGlobalSinkState &)*sink_state;
    auto &gstate = (HashJoinGlobalSourceState &)gstate_p;
    auto &lstate = (HashJoinLocalSourceState &)lstate_p;
    sink.scanned_data = true;

    if (!sink.external) {
        if (IsRightOuterJoin(join_type)) {
            {
                lock_guard<mutex> guard(gstate.lock);
                                // 拆解扫描部分hash表的数据
                lstate.ScanFullOuter(sink, gstate);
            }
                        // 扫描hash表读取数据
            sink.hash_table->GatherFullOuter(chunk, lstate.addresses, lstate.full_outer_found_entries);
        }
        return;
    }
}


void HashJoinLocalSourceState::ScanFullOuter(HashJoinGlobalSinkState &sink, HashJoinGlobalSourceState &gstate) {
    auto &fo_ss = gstate.full_outer_scan;
    idx_t scan_index_before = fo_ss.scan_index;
    full_outer_found_entries = sink.hash_table->ScanFullOuter(fo_ss, addresses);
    idx_t scanned = fo_ss.scan_index - scan_index_before;
    full_outer_in_progress = scanned;
}

小结

  • DuckDB在多线程同步,核心就是在Combine的时候:加锁,并发是通过原子变量的方式实现并发写入hash表的操作
  • 通过local/global 拆分私有内存和公共内存,并发的基础是在私有内存上进行运算,同步的部分主要在公有内存的更新

3. Spill To Disk的实现

DuckDB并没有如笔者预期的实现异步IO, 所以任意的执行线程是有可能Stall在系统的I/O调度上的,我想大概率是DuckDB本身的定位对于高并发场景的支持不是那么敏感所导致的。这里他们也作为了后续TODO的计划之一。

image.png

4. 参考资料

DuckDB源码

Push-Based Execution in DuckDB

本文参与?腾讯云自媒体分享计划,分享自作者个人站点/博客。
原始发表:2023-02-12,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客?前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与?腾讯云自媒体分享计划? ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 1. 基础知识
  • 2. 核心算子的并行
    • Sort算子
      • 聚合算子(这里分析的是Prefetch Agg Operator算子)
        • Join算子
          • 小结
          • 3. Spill To Disk的实现
          • 4. 参考资料
          领券
          问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档
          http://www.vxiaotou.com