首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

万字长文,讲懂SQL调优,还不会,来找我

很多朋友在做数据分析时,分析两分钟,跑数两小时?

在使用SQL过程中不仅要关注数据结果,同样要注意SQL语句的执行效率。

本文涉及三部分:

SQL介绍

SQL优化方法

SQL优化实例

1、MySQL的基本架构

1)MySQL的基础架构图

左边的client可以看成是客户端,客户端有很多,像我们经常你使用的CMD黑窗口,像我们经常用于学习的WorkBench,像企业经常使用的Navicat工具,它们都是一个客户端。右边的这一大堆都可以看成是Server(MySQL的服务端),我们将Server在细分为sql层和存储引擎层。

当查询出数据以后,会返回给执行器。执行器一方面将结果写到查询缓存里面,当你下次再次查询的时候,就可以直接从查询缓存中获取到数据了。另一方面,直接将结果响应回客户端。

2)查询数据库的引擎

show engines;

show variables like “%storage_engine%”;

3)指定数据库对象的存储引擎

create?table?tb(

id?int(4)?auto_increment,

name?varchar(5),

dept?varchar(5),

primary?key(id)

)?engine=myISAM?auto_increment=1?default?charset=utf8;

SQL优化

1)为什么需要进行SQL优化?

在进行多表连接查询、子查询等操作的时候,由于你写出的SQL语句欠佳,导致的服务器执行时间太长,我们等待结果的时间太长。基于此,我们需要学习怎么优化SQL。

2)mysql的编写过程和解析过程

编写过程

select?dinstinct??..from??..join?..on?..where?..group?by?..having?..order?by?..limit?..

解析过程

from?..?on..?join?..where?..group?by?..having?..select?dinstinct?..order?by?..limit?..

提供一个网站,详细说明了mysql解析过程:

https://www.cnblogs.com/annsshadow/p/5037667.html

3)SQL优化—主要就是优化索引

优化SQL,最重要的就是优化SQL索引。

索引相当于字典的目录。利用字典目录查找汉字的过程,就相当于利用SQL索引查找某条记录的过程。有了索引,就可以很方便快捷的定位某条记录。

什么是索引?

索引就是帮助MySQL高效获取数据的一种【数据结构】。索引是一种树结构,MySQL中一般用的是【B+树】。

索引图示说明(这里用二叉树来帮助我们理解索引)

树形结构的特点是:子元素比父元素小的,放在左侧;子元素比父元素大的,放在右侧。

这个图示只是为了帮我们简单理解索引的,真实的关于【B+树】的说明,我们会在下面进行说明。

索引是怎么查找数据的呢?两个字【指向】,上图中我们给age列指定了一个索引,即类似于右侧的这种树形结构。mysql表中的每一行记录都有一个硬件地址,例如索引中的age=50,指向的就是源表中该行的标识符(“硬件地址”)。

也就是说,树形索引建立了与源表中每行记录硬件地址的映射关系,当你指定了某个索引,这种映射关系也就建成了,这就是为什么我们可以通过索引快速定位源表中记录的原因。

以【select * from student where age=33】查询语句为例。当我们不加索引的时候,会从上到下扫描源表,当扫描到第5行的时候,找到了我们想要找到了元素,一共是查询了5次。

当添加了索引以后,就直接在树形结构中进行查找,33比50小,就从左侧查询到了23,33大于23,就又查询到了右侧,这下找到了33,整个索引结束,一共进行了3次查找。是不是很方便,假如我们此时需要查找age=62,你再想想“添加索引”前后,查找次数的变化情况。

4)索引的弊端

1.当数据量很大的时候,索引也会很大(当然相比于源表来说,还是相当小的),也需要存放在内存/硬盘中(通常存放在硬盘中),占据一定的内存空间/物理空间。

2.索引并不适用于所有情况:a.少量数据;b.频繁进行改动的字段,不适合做索引;c.很少使用的字段,不需要加索引;

3.索引会提高数据查询效率,但是会降低“增、删、改”的效率。当不使用索引的时候,我们进行数据的增删改,只需要操作源表即可,但是当我们添加索引后,不仅需要修改源表,也需要再次修改索引,很麻烦。尽管是这样,添加索引还是很划算的,因为我们大多数使用的就是查询,“查询”对于程序的性能影响是很大的。

5)索引的优势

1.提高查询效率(降低了IO使用率)。当创建了索引后,查询次数减少了。

2.降低CPU使用率。比如说【…order by age desc】这样一个操作,当不加索引,会把源表加载到内存中做一个排序操作,极大的消耗了资源。但是使用了索引以后,第一索引本身就小一些,第二索引本身就是排好序的,左边数据最小,右边数据最大。

6)B+树图示说明

MySQL中索引使用的就是B+树结构。

关于B+树的说明:

首先,Btree一般指的都是【B+树】,数据全部存放在叶子节点中。对于上图来说,最下面的第3层,属于叶子节点,真实数据部份都是存放在叶子节点当中的。

那么对于第1、2层中的数据又是干嘛的呢?答:用于分割指针块儿的,比如说小于26的找P1,介于26-30之间的找P2,大于30的找P3。

其次,三层【B+树】可以存放上百万条数据。这么多数据怎么放的呢?增加“节点数”。图中我们只有三个节点。

最后,【B+树】中查询任意数据的次数,都是n次,n表示的是【B+树】的高度。

3、索引的分类与创建

1)索引分类

单值索引

唯一索引

复合索引

单值索引

利用表中的某一个字段创建单值索引。一张表中往往有多个字段,也就是说每一列其实都可以创建一个索引,这个根据我们实际需求来进行创建。还需要注意的一点就是,一张表可以创建多个“单值索引”。

假如某一张表既有age字段,又有name字段,我们可以分别对age、name创建一个单值索引,这样一张表就有了两个单值索引。

唯一索引

也是利用表中的某一个字段创建单值索引,与单值索引不同的是:创建唯一索引的字段中的数据,不能有重复值。像age肯定有很多人的年龄相同,像name肯定有些人是重名的,因此都不适合创建“唯一索引”。像编号id、学号sid,对于每个人都不一样,因此可以用于创建唯一索引。

复合索引

多个列共同构成的索引。比如说我们创建这样一个“复合索引”(name,age),先利用name进行索引查询,当name相同的时候,我们利用age再进行一次筛选。注意:复合索引的字段并不是非要都用完,当我们利用name字段索引出我们想要的结果以后,就不需要再使用age进行再次筛选了。

2)创建索引

语法

语法:create 索引类型 索引名 on 表(字段);

建表语句如下:

查询表结构如下:

创建索引的第一种方式

Ⅰ 创建单值索引

create?index?dept_index?on?tb(dept);

Ⅱ 创建唯一索引:这里我们假定name字段中的值都是唯一的

create?unique?index?name_index?on?tb(name);

Ⅲ 创建复合索引

create?index?dept_name_index?on?tb(dept,name);

创建索引的第二种方式

先删除之前创建的索引以后,再进行这种创建索引方式的测试;

语法:alter table 表名 add 索引类型 索引名(字段)

Ⅰ 创建单值索引

alter?table?tb?add?index?dept_index(dept);

Ⅱ 创建唯一索引:这里我们假定name字段中的值都是唯一的

alter?table?tb?add?unique?index?name_index(name);

Ⅲ 创建复合索引

alter?table?tb?add?index?dept_name_index(dept,name);

补充说明

如果某个字段是primary key,那么该字段默认就是主键索引。

主键索引和唯一索引非常相似。相同点:该列中的数据都不能有相同值;不同点:主键索引不能有null值,但是唯一索引可以有null值。

3)索引删除和索引查询

索引删除

语法:drop index 索引名 on 表名;

drop?index?name_index?on?tb;

索引查询

语法:show index from 表名;

show?index?from?tb;

结果如下:

4、SQL性能问题的探索

人为优化:需要我们使用explain分析SQL的执行计划。该执行计划可以模拟SQL优化器执行SQL语句,可以帮助我们了解到自己编写SQL的好坏。

SQL优化器自动优化:最开始讲述MySQL执行原理的时候,我们已经知道MySQL有一个优化器,当你写了一个SQL语句的时候,SQL优化器如果认为你写的SQL语句不够好,就会自动写一个好一些的等价SQL去执行。

SQL优化器自动优化功能【会干扰】我们的人为优化功能。当我们查看了SQL执行计划以后,如果写的不好,我们会去优化自己的SQL。当我们以为自己优化的很好的时候,最终的执行计划,并不是按照我们优化好的SQL语句来执行的,而是有时候将我们优化好的SQL改变了,去执行。

SQL优化是一种概率问题,有时候系统会按照我们优化好的SQL去执行结果(优化器觉得你写的差不多,就不会动你的SQL)。有时候优化器仍然会修改我们优化好的SQL,然后再去执行。

1)查看执行计划

语法:explain + SQL语句

eg:explain select * from tb;

2)“执行计划”中需要知道的几个“关键字”

id :编号

select_type :查询类型

table :表

type :类型

possible_keys :预测用到的索引

key :实际使用的索引

key_len :实际使用索引的长度

ref :表之间的引用

rows :通过索引查询到的数据量

Extra :额外的信息

建表语句和插入数据:

#?建表语句

create?table?course

(

cid?int(3),

cname?varchar(20),

tid?int(3)

);

create?table?teacher

(

tid?int(3),

tname?varchar(20),

tcid?int(3)

);

create?table?teacherCard

(

tcid?int(3),

tcdesc?varchar(200)

);

#?插入数据

insert?into?course?values(1,'java',1);

insert?into?course?values(2,'html',1);

insert?into?course?values(3,'sql',2);

insert?into?course?values(4,'web',3);

insert?into?teacher?values(1,'tz',1);

insert?into?teacher?values(2,'tw',2);

insert?into?teacher?values(3,'tl',3);

insert?into?teacherCard?values(1,'tzdesc')?;

insert?into?teacherCard?values(2,'twdesc')?;

insert?into?teacherCard?values(3,'tldesc')?;

explain执行计划常用关键字详解

1)id关键字的使用说明

案例:查询课程编号为2 或 教师证编号为3 的老师信息:

#?查看执行计划

explain?select?t.*

from?teacher?t,course?c,teacherCard?tc

where?t.tid?=?c.tid?and?t.tcid?=?tc.tcid

and?(c.cid?=?2?or?tc.tcid?=?3);

结果如下:

接着,在往teacher表中增加几条数据。

insert?into?teacher?values(4,'ta',4);

insert?into?teacher?values(5,'tb',5);

insert?into?teacher?values(6,'tc',6);

再次查看执行计划。

#?查看执行计划

explain?select?t.*

from?teacher?t,course?c,teacherCard?tc

where?t.tid?=?c.tid?and?t.tcid?=?tc.tcid

and?(c.cid?=?2?or?tc.tcid?=?3);

结果如下:

表的执行顺序 ,因表数量改变而改变的原因:笛卡尔积。

a???b???c

2???3???4

最终:2 * 3 * 4 ?= 6 * 4 = 24

c???b???a

4???3???2

最终:4 * 3 * 2 = 12 * 2 = 24

分析:最终执行的条数,虽然是一致的。但是中间过程,有一张临时表是6,一张临时表是12,很明显6 < 12,对于内存来说,数据量越小越好,因此优化器肯定会选择第一种执行顺序。

结论:id值相同,从上往下顺序执行。表的执行顺序因表数量的改变而改变。

案例:查询教授SQL课程的老师的描述(desc)

#?查看执行计划

explain?select?tc.tcdesc?from?teacherCard?tc

where?tc.tcid?=

(

select?t.tcid?from?teacher?t

where??t.tid?=

(select?c.tid?from?course?c?where?c.cname?=?'sql')

);

结果如下:

结论:id值不同,id值越大越优先查询。这是由于在进行嵌套子查询时,先查内层,再查外层。

针对做一个简单的修改

#?查看执行计划

explain?select?t.tname?,tc.tcdesc?from?teacher?t,teacherCard?tc

where?t.tcid=?tc.tcid

and?t.tid?=?(select?c.tid?from?course?c?where?cname?=?'sql')?;

结果如下:

结论:id值有相同,又有不同。id值越大越优先;id值相同,从上往下顺序执行。

2)select_type关键字的使用说明:查询类型

simple:简单查询

不包含子查询,不包含union查询。

explain?select?*?from?teacher;

结果如下:

primary:包含子查询的主查询(最外层)

subquery:包含子查询的主查询(非最外层)

derived:衍生查询(用到了临时表)

a.在from子查询中,只有一张表;

b.在from子查询中,如果table1 union table2,则table1就是derived表;

explain?select??cr.cname

from?(?select?*?from?course?where?tid?=?1??union?select?*?from?course?where?tid?=?2?)?cr?;

结果如下:

union:union之后的表称之为union表,如上例

union result:告诉我们,哪些表之间使用了union查询

3)type关键字的使用说明:索引类型

system、const只是理想状况,实际上只能优化到index --> range --> ref这个级别。要对type进行优化的前提是,你得创建索引。

system

源表只有一条数据(实际中,基本不可能);

衍生表只有一条数据的主查询(偶尔可以达到)。

const

仅仅能查到一条数据的SQL ,仅针对Primary key或unique索引类型有效。

explain?select?tid?from?test01?where?tid?=1?;

结果如下:

删除以前的主键索引后,此时我们添加一个其他的普通索引:

create?index?test01_index?on?test01(tid)?;

#?再次查看执行计划

explain?select?tid?from?test01?where?tid?=1?;

结果如下:

eq_ref

唯一性索引,对于每个索引键的查询,返回匹配唯一行数据(有且只有1个,不能多 、不能0),并且查询结果和数据条数必须一致。

此种情况常见于唯一索引和主键索引。

delete?from?teacher?where?tcid?>=?4;

alter?table?teacherCard?add?constraint?pk_tcid?primary?key(tcid);

alter?table?teacher?add?constraint?uk_tcid?unique?index(tcid)?;

explain?select?t.tcid?from?teacher?t,teacherCard?tc?where?t.tcid?=?tc.tcid?;

结果如下:

总结:以上SQL,用到的索引是t.tcid,即teacher表中的tcid字段;如果teacher表的数据个数和连接查询的数据个数一致(都是3条数据),则有可能满足eq_ref级别;否则无法满足。条件很苛刻,很难达到。

ref

非唯一性索引,对于每个索引键的查询,返回匹配的所有行(可以0,可以1,可以多)

准备数据:

创建索引,并查看执行计划:

#?添加索引

alter?table?teacher?add?index?index_name?(tname)?;

#?查看执行计划

explain?select?*?from?teacher?????where?tname?=?'tz';

结果如下:

range

检索指定范围的行 ,where后面是一个范围查询(between, >, =, in)

in有时候会失效,从而转为无索引时候的ALL

#?添加索引

alter?table?teacher?add?index?tid_index?(tid)?;

#?查看执行计划:以下写了一种等价SQL写法,查看执行计划

explain?select?t.*?from?teacher?t?where?t.tid?in?(1,2)?;

explain?select?t.*?from?teacher?t?where?t.tid?

结果如下:

index

查询全部索引中的数据(扫描整个索引)

ALL

查询全部源表中的数据(暴力扫描全表)

注意:cid是索引字段,因此查询索引字段,只需要扫描索引表即可。但是tid不是索引字段,查询非索引字段,需要暴力扫描整个源表,会消耗更多的资源。

4)possible_keys和key

possible_keys可能用到的索引。是一种预测,不准。了解一下就好。

key指的是实际使用的索引。

#?先给course表的cname字段,添加一个索引

create?index?cname_index?on?course(cname);

#?查看执行计划

explain?select?t.tname?,tc.tcdesc?from?teacher?t,teacherCard?tc

where?t.tcid=?tc.tcid

and?t.tid?=?(select?c.tid?from?course?c?where?cname?=?'sql')?;

结果如下:

有一点需要注意的是:如果possible_key/key是NULL,则说明没用索引。

5)key_len

索引的长度,用于判断复合索引是否被完全使用(a,b,c)。

新建一张新表,用于测试

#?创建表

create?table?test_kl

(

name?char(20)?not?null?default?''

);

#?添加索引

alter?table?test_kl?add?index?index_name(name)?;

#?查看执行计划

explain?select?*?from?test_kl?where?name?=''?;

结果如下:

结果分析:因为我没有设置服务端的字符集,因此默认的字符集使用的是latin1,对于latin1一个字符代表一个字节,因此这列的key_len的长度是20,表示使用了name这个索引。

给test_kl表,新增name1列,该列没有设置“not null”

结果如下:

结果分析:如果索引字段可以为null,则mysql底层会使用1个字节用于标识。

删除原来的索引name和name1,新增一个复合索引

#?删除原来的索引name和name1

drop?index?index_name?on?test_kl?;

drop?index?index_name1?on?test_kl?;

#?增加一个复合索引

create?index?name_name1_index?on?test_kl(name,name1);

#?查看执行计划

explain?select?*?from?test_kl?where?name1?=?''?;?--121

explain?select?*?from?test_kl?where?name?=?''?;?--60

结果如下:

结果分析:对于下面这个执行计划,可以看到我们只使用了复合索引的第一个索引字段name,因此key_len是20,这个很清楚。再看上面这个执行计划,我们虽然仅仅在where后面使用了复合索引字段中的name1字段,但是你要使用复合索引的第2个索引字段,会默认使用了复合索引的第1个索引字段name,由于name1可以是null,因此key_len = 20 + 20 + 1 = 41呀!

再次怎加一个name2字段,并为该字段创建一个索引。

不同的是:该字段数据类型是varchar

#?新增一个字段name2,name2可以为null

alter?table?test_kl?add?column?name2?varchar(20)?;

#?给name2字段,设置为索引字段

alter?table?test_kl?add?index?name2_index(name2)?;

#?查看执行计划

explain?select?*?from?test_kl?where?name2?=?''?;

结果如下:

结果分析:key_len = 20 + 1 + 2,这个20 + 1我们知道,这个2又代表什么呢?原来varchar属于可变长度,在mysql底层中,用2个字节标识可变长度。

6)ref

这里的ref的作用,指明当前表所参照的字段。

注意与type中的ref值区分。在type中,ref只是type类型的一种选项值。

#?给course表的tid字段,添加一个索引

create?index?tid_index?on?course(tid);

#?查看执行计划

explain?select?*?from?course?c,teacher?t

where?c.tid?=?t.tid

and?t.tname?=?'tw';

结果如下:

结果分析:有两个索引,c表的c.tid引用的是t表的tid字段,因此可以看到显示结果为【数据库名.t.tid】,t表的t.name引用的是一个常量"tw",因此可以看到结果显示为const,表示一个常量。

7)rows(这个目前还是有点疑惑)

被索引优化查询的数据个数 (实际通过索引而查询到的数据个数)

explain?select?*

from?course?c,teacher?t

where?c.tid?=?t.tid

and?t.tname?=?'tz'?;

结果如下:

8)extra

表示其他的一些说明,也很有用。

using filesort:针对单索引的情况

当出现了这个词,表示你当前的SQL性能消耗较大。表示进行了一次“额外”的排序。常见于order by语句中。

Ⅰ 什么是“额外”的排序?

为了讲清楚这个,我们首先要知道什么是排序。我们为了给某一个字段进行排序的时候,首先你得先查询到这个字段,然后在将这个字段进行排序。

紧接着,我们查看如下两个SQL语句的执行计划。

#?新建一张表,建表同时创建索引

create?table?test02

(

a1?char(3),

a2?char(3),

a3?char(3),

index?idx_a1(a1),

index?idx_a2(a2),

index?idx_a3(a3)

);

#?查看执行计划

explain?select?*?from?test02?where?a1?=''?order?by?a1?;

explain?select?*?from?test02?where?a1?=''?order?by?a2?;

结果如下:

结果分析:对于第一个执行计划,where后面我们先查询了a1字段,然后再利用a1做了依次排序,这个很轻松。但是对于第二个执行计划,where后面我们查询了a1字段,然而利用的却是a2字段进行排序,此时myql底层会进行一次查询,进行“额外”的排序。

总结:对于单索引,如果排序和查找是同一个字段,则不会出现using filesort;如果排序和查找不是同一个字段,则会出现using filesort;因此where哪些字段,就order by哪些些字段。

using filesort:针对复合索引的情况

不能跨列(官方术语:最佳左前缀)

#?删除test02的索引

drop?index?idx_a1?on?test02;

drop?index?idx_a2?on?test02;

drop?index?idx_a3?on?test02;

#?创建一个复合索引

alter?table?test02?add?index?idx_a1_a2_a3?(a1,a2,a3)?;

#?查看下面SQL语句的执行计划

explain?select?*from?test02?where?a1=''?order?by?a3?;??--using?filesort

explain?select?*from?test02?where?a2=''?order?by?a3?;?--using?filesort

explain?select?*from?test02?where?a1=''?order?by?a2?;

结果如下:

结果分析:复合索引的顺序是(a1,a2,a3),可以看到a1在最左边,因此a1就叫做“最佳左前缀”,如果要使用后面的索引字段,必须先使用到这个a1字段。对于explain1,where后面我们使用a1字段,但是后面的排序使用了a3,直接跳过了a2,属于跨列;对于explain2,where后面我们使用了a2字段,直接跳过了a1字段,也属于跨列;对于explain3,where后面我们使用a1字段,后面使用的是a2字段,因此没有出现【using filesort】。

using temporary

当出现了这个词,也表示你当前的SQL性能消耗较大。这是由于当前SQL用到了临时表。一般出现在group by中。

explain?select?a1?from?test02?where?a1?in?('1','2','3')?group?by?a1?;

explain?select?a1?from?test02?where?a1?in?('1','2','3')?group?by?a2?;?--using?temporary

结果如下:

结果分析:当你查询哪个字段,就按照那个字段分组,否则就会出现using temporary。

针对using temporary,我们在看一个例子:

using temporary表示需要额外再使用一张表,一般出现在group by语句中。虽然已经有表了,但是不适用,必须再来一张表。

再次来看mysql的编写过程和解析过程。

Ⅰ 编写过程

select?dinstinct??..from??..join?..on?..where?..group?by?..having?..order?by?..limit?..

Ⅱ 解析过程

from?..?on..?join?..where?..group?by?..having?..select?dinstinct?..order?by?..limit?..

很显然,where后是group by,然后才是select。基于此,我们再查看如下两个SQL语句的执行计划。

explain?select?*?from?test03?where?a2=2?and?a4=4?group?by?a2,a4;

explain?select?*?from?test03?where?a2=2?and?a4=4?group?by?a3;

分析如下:对于第一个执行计划,where后面是a2和a4,接着我们按照a2和a4分组,很明显这两张表已经有了,直接在a2和a4上分组就行了。但是对于第二个执行计划,where后面是a2和a4,接着我们却按照a3分组,很明显我们没有a3这张表,因此有需要再来一张临时表a3。因此就会出现using temporary。

using index

当你看到这个关键词,恭喜你,表示你的SQL性能提升了。

using index称之为“索引覆盖”。

当出现了using index,就表示不用读取源表,而只利用索引获取数据,不需要回源表查询。

只要使用到的列,全部出现在索引中,就是索引覆盖。

#?删除test02中的复合索引idx_a1_a2_a3

drop?index?idx_a1_a2_a3?on?test02;

#?重新创建一个复合索引

idx_a1_a2create?index?idx_a1_a2?on?test02(a1,a2);

#?查看执行计划

explain?select?a1,a3?from?test02?where?a1=''?or?a3=?''?;

explain?select?a1,a2?from?test02?where?a1=''?and?a2=?''?;

结果如下:

结果分析:我们创建的是a1和a2的复合索引,对于第一个执行计划,我们却出现了a3,该字段并没有创建索引,因此没有出现using index,而是using where,表示我们需要回表查询。对于第二个执行计划,属于完全的索引覆盖,因此出现了using index。

针对using index,我们在查看一个案例:

explain?select?a1,a2?from?test02?where?a1=''?or?a2=?''?;

explain?select?a1,a2?from?test02;

结果如下:

如果用到了索引覆盖(using index时),会对possible_keys和key造成影响:

a.如果没有where,则索引只出现在key中;

b.如果有where,则索引 出现在key和possible_keys中。

using where

表示需要【回表查询】,表示既在索引中进行了查询,又回到了源表进行了查询。

#?删除test02中的复合索引idx_a1_a2

drop?index?idx_a1_a2?on?test02;

#?将a1字段,新增为一个索引

create?index?a1_index?on?test02(a1);

#?查看执行计划

explain?select?a1,a3?from?test02?where?a1=""?and?a3=""?;

结果如下:

结果分析:我们既使用了索引a1,表示我们使用了索引进行查询。但是又对于a3字段,我们并没有使用索引,因此对于a3字段,需要回源表查询,这个时候出现了using where。

impossible where(了解)

当where子句永远为False的时候,会出现impossible where

#?查看执行计划

explain?select?a1?from?test02?where?a1="a"?and?a1="b"?;

结果如下:

6、优化示例

1)引入案例

#?创建新表

create?table?test03

(

a1?int(4)?not?null,

a2?int(4)?not?null,

a3?int(4)?not?null,

a4?int(4)?not?null

);

#?创建一个复合索引

create?index?a1_a2_a3_test03?on?test03(a1,a2,a3);

#?查看执行计划

explain?select?a3?from?test03?where?a1=1?and?a2=2?and?a3=3;

结果如下:

推荐写法:复合索引顺序和使用顺序一致。

下面看看【不推荐写法】:复合索引顺序和使用顺序不一致。

#?查看执行计划

explain?select?a3?from?test03?where?a3=1?and?a2=2?and?a1=3;

结果如下:

结果分析:虽然结果和上述结果一致,但是不推荐这样写。但是这样写怎么又没有问题呢?这是由于SQL优化器的功劳,它帮我们调整了顺序。

最后再补充一点:对于复合索引,不要跨列使用

#?查看执行计划

explain?select?a3?from?test03?where?a1=1?and?a3=2?group?by?a3;

结果如下:

结果分析:a1_a2_a3是一个复合索引,我们使用a1索引后,直接跨列使用了a3,直接跳过索引a2,因此索引a3失效了,当使用a3进行分组的时候,就会出现using where。

2)单表优化

#?创建新表

create?table?book

(

bid?int(4)?primary?key,

name?varchar(20)?not?null,

authorid?int(4)?not?null,

publicid?int(4)?not?null,

typeid?int(4)?not?null

);

#?插入数据

insert?into?book?values(1,'tjava',1,1,2)?;

insert?into?book?values(2,'tc',2,1,2)?;

insert?into?book?values(3,'wx',3,2,1)?;

insert?into?book?values(4,'math',4,2,3)?;

结果如下:

案例:查询authorid=1且typeid为2或3的bid,并根据typeid降序排列。

explain

select?bid?from?book

where?typeid?in(2,3)?and?authorid=1

order?by?typeid?desc?;

结果如下:

这是没有进行任何优化的SQL,可以看到typ为ALL类型,extra为using filesort,可以想象这个SQL有多恐怖。

优化:添加索引的时候,要根据MySQL解析顺序添加索引,又回到了MySQL的解析顺序,下面我们再来看看MySQL的解析顺序。

from?..?on..?join?..where?..group?by?..having?..select?dinstinct?..order?by?..limit?..

优化1:基于此,我们进行索引的添加,并再次查看执行计划。

#?添加索引

create?index?typeid_authorid_bid?on?book(typeid,authorid,bid);

#?再次查看执行计划

explain

select?bid?from?book

where?typeid?in(2,3)?and?authorid=1

order?by?typeid?desc?;

结果如下:

结果分析:结果并不是和我们想象的一样,还是出现了using where,查看索引长度key_len=8,表示我们只使用了2个索引,有一个索引失效了。

优化2:使用了in有时候会导致索引失效,基于此有了如下一种优化思路。

将in字段放在最后面。需要注意一点:每次创建新的索引的时候,最好是删除以前的废弃索引,否则有时候会产生干扰(索引之间)。

#?删除以前的索引

drop?index?typeid_authorid_bid?on?book;

#?再次创建索引

create?index?authorid_typeid_bid?on?book(authorid,typeid,bid);

#?再次查看执行计划

explain

select?bid?from?book

where?authorid=1??and?typeid?in(2,3)

order?by?typeid?desc?;

结果如下:

结果分析:这里虽然没有变化,但是这是一种优化思路。

总结如下:

a.最佳做前缀,保持索引的定义和使用的顺序一致性

b.索引需要逐步优化(每次创建新索引,根据情况需要删除以前的废弃索引)

c.将含In的范围查询,放到where条件的最后,防止失效。

本例中同时出现了Using where(需要回原表); Using index(不需要回原表):原因,where authorid=1 and typeid in(2,3)中authorid在索引(authorid,typeid,bid)中,因此不需要回原表(直接在索引表中能查到);而typeid虽然也在索引(authorid,typeid,bid)中,但是含in的范围查询已经使该typeid索引失效,因此相当于没有typeid这个索引,所以需要回原表(using where);

例如以下没有了In,则不会出现using where:

explain?select?bid?from?book

where??authorid=1?and?typeid?=3

order?by?typeid?desc?;

结果如下:

3)两表优化

#?创建teacher2新表

create?table?teacher2

(

tid?int(4)?primary?key,

cid?int(4)?not?null

);

#?插入数据

insert?into?teacher2?values(1,2);

insert?into?teacher2?values(2,1);

insert?into?teacher2?values(3,3);

#?创建course2新表

create?table?course2

(

cid?int(4)?,

cname?varchar(20)

);

#?插入数据

insert?into?course2?values(1,'java');

insert?into?course2?values(2,'python');

insert?into?course2?values(3,'kotlin');

案例:使用一个左连接,查找教java课程的所有信息。

explain

select?*

from?teacher2?t

left?outer?join?course2?c

on?t.cid=c.cid

where?c.cname='java';

结果如下:

优化

对于两张表,索引往哪里加?答:对于表连接,小表驱动大表。索引建立在经常使用的字段上。

为什么小表驱动大表好一些呢?

小表:10

大表:300

#?小表驱动大表

select?...where?小表.x10=大表.x300?;

for(int?i=0;i

{

for(int?j=0;j

{

...

}

}

#?大表驱动小表

select?...where?大表.x300=小表.x10?;

for(int?i=0;i

{

for(int?j=0;j

{

...

}

}

分析:以上2个FOR循环,最终都会循环3000次;但是对于双层循环来说:一般建议,将数据小的循环,放外层。数据大的循环,放内层。不用管这是为什么,这是编程语言的一个原则,对于双重循环,外层循环少,内存循环大,程序的性能越高。

结论:当编写【…on t.cid=c.cid】时,将数据量小的表放左边(假设此时t表数据量小,c表数据量大。)

我们已经知道了,对于两表连接,需要利用小表驱动大表,例如【…on t.cid=c.cid】,t如果是小表(10条),c如果是大表(300条),那么t每循环1次,就需要循环300次,即t表的t.cid字段属于,经常使用的字段,因此需要给cid字段添加索引。

更深入的说明:一般情况下,左连接给左表加索引。右连接给右表加索引。其他表需不需要加索引,我们逐步尝试。

#?给左表的字段加索引

create?index?cid_teacher2?on?teacher2(cid);

#?查看执行计划

explain

select?*

from?teacher2?t

left?outer?join?course2?c

on?t.cid=c.cid

where?c.cname='java';

结果如下:

当然你可以下去接着优化,给cname添加一个索引。索引优化是一个逐步的过程,需要一点点尝试。

#?给cname的字段加索引

create?index?cname_course2?on?course2(cname);

#?查看执行计划

explain

select?t.cid,c.cname

from?teacher2?t

left?outer?join?course2?c

on?t.cid=c.cid

where?c.cname='java';

结果如下:

最后补充一个:Using join buffer是extra中的一个选项,表示Mysql引擎使用了“连接缓存”,即MySQL底层动了你的SQL,你写的太差了。

4)三表优化

大于等于张表,优化原则一样

小表驱动大表

索引建立在经常查询的字段上

7、避免索引失效的一些原则

复合索引需要注意的点

复合索引,不要跨列或无序使用(最佳左前缀)

复合索引,尽量使用全索引匹配,也就是说,你建立几个索引,就使用几个索引

不要在索引上进行任何操作(计算、函数、类型转换),否则索引失效

explain?select?*?from?book?where?authorid?=?1?and?typeid?=?2;

explain?select?*?from?book?where?authorid*2?=?1?and?typeid?=?2?;

结果如下:

索引不能使用不等于(!= )或is null (is not null),否则自身以及右侧所有全部失效(针对大多数情况)。复合索引中如果有>,则自身和右侧索引全部失效。

#?针对不是复合索引的情况

explain?select?*?from?book?where?authorid?!=?1?and?typeid?=2?;

explain?select?*?from?book?where?authorid?!=?1?and?typeid?!=2?;

结果如下:

再观看下面这个案例:

#?删除单独的索引

drop?index?authorid_index?on?book;

drop?index?typeid_index?on?book;

#?创建一个复合索引

alter?table?book?add?index?idx_book_at?(authorid,typeid);

#?查看执行计划

explain?select?*?from?book?where?authorid?>?1?and?typeid?=?2?;

explain?select?*?from?book?where?authorid?=?1?and?typeid?>?2?;

结果如下:

结论:复合索引中如果有【>】,则自身和右侧索引全部失效。

在看看复合索引中有【

我们学习索引优化 ,是一个大部分情况适用的结论,但由于SQL优化器等原因 该结论不是100%正确。一般而言, 范围查询(> < in),之后的索引失效。

SQL优化,是一种概率层面的优化。至于是否实际使用了我们的优化,需要通过explain进行推测。

#?删除复合索引

drop?index?authorid_typeid_bid?on?book;

#?为authorid和typeid,分别创建索引

create?index?authorid_index?on?book(authorid);

create?index?typeid_index?on?book(typeid);

#?查看执行计划

explain?select?*?from?book?where?authorid?=?1?and?typeid?=2?;

结果如下:

结果分析:我们创建了两个索引,但是实际上只使用了一个索引。因为对于两个单独的索引,程序觉得只用一个索引就够了,不需要使用两个。

当我们创建一个复合索引,再次执行上面的SQL:

#?查看执行计划

explain?select?*?from?book?where?authorid?=?1?and?typeid?=2?;

结果如下:

索引覆盖,百分之百没问题

like尽量以“常量”开头,不要以’%'开头,否则索引失效

explain?select?*?from?teacher?where?tname?like?"%x%"?;

explain?select?*?from?teacher??where?tname?like?'x%';

explain?select?tname?from?teacher??where?tname?like?'%x%';

结果如下:

结论如下:like尽量不要使用类似"%x%"情况,但是可以使用"x%"情况。如果非使用 "%x%"情况,需要使用索引覆盖。

尽量不要使用类型转换(显示、隐式),否则索引失效

explain?select?*?from?teacher?where?tname?=?'abc'?;

explain?select?*?from?teacher?where?tname?=?123?;

结果如下:

尽量不要使用or,否则索引失效

explain?select?*?from?teacher?where?tname?=''?and?tcid?>1?;

explain?select?*?from?teacher?where?tname?=''?or?tcid?>1?;

结果如下:

注意:or很猛,会让自身索引和左右两侧的索引都失效。

8、一些其他的优化方法

1)exists和in的优化

如果主查询的数据集大,则使用i关键字,效率高。

如果子查询的数据集大,则使用exist关键字,效率高。

select?..from?table?where?exist?(子查询)?;

select?..from?table?where?字段?in??(子查询)?;

2)order by优化

IO就是访问硬盘文件的次数

using filesort 有两种算法:双路排序、单路排序(根据IO的次数)

MySQL4.1之前默认使用双路排序;双路:扫描2次磁盘(1:从磁盘读取排序字段,对排序字段进行排序(在buffer中进行的排序)2:扫描其他字段)

MySQL4.1之后默认使用单路排序:只读取一次(全部字段),在buffer中进行排序。但种单路排序会有一定的隐患(不一定真的是“单路/1次IO”,有可能多次IO)。原因:如果数据量特别大,则无法将所有字段的数据一次性读取完毕,因此会进行“分片读取、多次读取”。

注意:单路排序 比双路排序 会占用更多的buffer。

单路排序在使用时,如果数据大,可以考虑调大buffer的容量大小:

#?不一定真的是“单路/1次IO”,有可能多次IO

set?max_length_for_sort_data?=?1024

如果max_length_for_sort_data值太低,则mysql会自动从 单路->双路(太低:需要排序的列的总大小超过了max_length_for_sort_data定义的字节数)

提高order by查询的策略:

选择使用单路、双路 ;调整buffer的容量大小

避免使用select * …(select后面写所有字段,也比写*效率高)

复合索引,不要跨列使用 ,避免using filesort保证全部的排序字段,排序的一致性(都是升序或降序)

篇幅很长,内容较多,建议收藏。

  • 发表于:
  • 原文链接https://page.om.qq.com/page/OxlgMf8r_q9kCD0eyyMnoI5Q0
  • 腾讯「腾讯云开发者社区」是腾讯内容开放平台帐号(企鹅号)传播渠道之一,根据《腾讯内容开放平台服务协议》转载发布内容。
  • 如有侵权,请联系 cloudcommunity@tencent.com 删除。

扫码

添加站长 进交流群

领取专属 10元无门槛券

私享最新 技术干货

扫码加入开发者社群
领券
http://www.vxiaotou.com