首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

神经网络原来这么简单,机器学习入门贴送给你 | 干货

你想学机器学习吗?这里有一个入门贴适合你。

什么神经网络、随机森林、计算机视觉通通一网打尽。

这个Facebook软件工程师做了一个入门贴。

专为基础为零的初学者打造。

有基础的同学,也可以来看看加深一下理解。

我们就以神经网络为例先来一睹为快吧!

神经网络概论

作者说,神经网络并不复杂!

“神经网络”一词很流行,人们通常认为它很难,但其实要简单得多。

是不是这样呢?先看再说。

神经网络的理解主要分为三个部分,神经元、神经网络的构建、训练神经网络。

神经元——神经网络的基本单元

这是2-input神经元的样子。

首先神经元接受输入x1、x2,进行一些数学运算以后,然后产生一个输出y。

在神经元里,通常会发生三件事:

1、每个输入乘以相应的权重;

2、将所有加权输入加在一起,在加上一个偏差b;

3、导入一个激活函数,得到输出y。

通常来说,激活函数使用Sigmoid函数,也就是常说的S型函数,输入任意值(-∞,+∞),最后输出都能停留在0-1之间。

对此,他还举了一个简单的例子。

以激活函数是S型函数、2输入神经元为例,设置参数 w=[0,1] (w1=0,w2=1),b=4。

input:x=[2,3]

output:y=0.999

这也就是最为朴素的神经网络——前馈神经网络。

对此,作者还用Python实现了整个过程。

代码语言:javascript
复制
import?numpy?as?np??def?sigmoid(x):???#?Our?activation?function:?f(x)?=?1?/?(1?+?e^(-x))???return?1?/?(1?+?np.exp(-x))??class?Neuron:???def?__init__(self,?weights,?bias):?????self.weights?=?weights?????self.bias?=?bias????def?feedforward(self,?inputs):?????#?Weight?inputs,?add?bias,?then?use?the?activation?function?????total?=?np.dot(self.weights,?inputs)?+?self.bias?????return?sigmoid(total)??weights?=?np.array([0,?1])?#?w1?=?0,?w2?=?1?bias?=?4???????????????????#?b?=?4?n?=?Neuron(weights,?bias)??x?=?np.array([2,?3])???????#?x1?=?2,?x2?=?3?print(n.feedforward(x))????#?0.9990889488055994?

?构建神经网络

神经元连接在一起就是神经网络。

两个输入,一个含有两个神经元的隐藏层,一个含有1个神经元的输出层就构建了一个神经网络。

需要注意的是,可以用多层隐藏层。就比如,像这样:

我们仍以上个示例的条件为例。

一个神经网络可以包含任意数量的层和任意数量的神经元。

以Python代码示例如下:

代码语言:javascript
复制
import?numpy?as?np??#?...?code?from?previous?section?here??class?OurNeuralNetwork:???'''???A?neural?network?with:?????-?2?inputs?????-?a?hidden?layer?with?2?neurons?(h1,?h2)?????-?an?output?layer?with?1?neuron?(o1)???Each?neuron?has?the?same?weights?and?bias:?????-?w?=?[0,?1]?????-?b?=?0???'''???def?__init__(self):?????weights?=?np.array([0,?1])?????bias?=?0??????#?The?Neuron?class?here?is?from?the?previous?section?????self.h1?=?Neuron(weights,?bias)?????self.h2?=?Neuron(weights,?bias)?????self.o1?=?Neuron(weights,?bias)????def?feedforward(self,?x):?????out_h1?=?self.h1.feedforward(x)?????out_h2?=?self.h2.feedforward(x)??????#?The?inputs?for?o1?are?the?outputs?from?h1?and?h2?????out_o1?=?self.o1.feedforward(np.array([out_h1,?out_h2]))??????return?out_o1??network?=?OurNeuralNetwork()?x?=?np.array([2,?3])?print(network.feedforward(x))?#?0.7216325609518421?

训练神经网路——计算损失函数

假设,我们正在处理以下这个项目。通过人员的体重和身高来判断性别。

以weight、height作为输入,以gender作为输出。

Male设置为0,Female设置为1,还对其余数据进行了简化。

在训练神经网络之前,首先需要一个方法来量化它做得有多“好”,是否能够做得“更好”,那就是损失函数(loss)。

这里,我们将使用损失函数的一种——均方误差来计算。

预测结果越好,说明损失也就会越低。而训练神经网络的目的,就在于尽可能的减少损失。

如果我们确信所有的人都是Male,也就是说预测值为0,会出现什么样的结果?

Python示例:

代码语言:javascript
复制
import?numpy?as?np??def?mse_loss(y_true,?y_pred):???#?y_true?and?y_pred?are?numpy?arrays?of?the?same?length.???return?((y_true?-?y_pred)?**?2).mean()??y_true?=?np.array([1,?0,?0,?1])?y_pred?=?np.array([0,?0,?0,?0])??print(mse_loss(y_true,?y_pred))?#?0.5?

训练神经网络——最小化损失

计算了损失函数之后,就需要将损失最小化,这也是训练神经网络的最终目的所在。

接下来帖子有一段多变量演算,涉及微积分。

作者表示,

如果对微积分不满意,可随时跳过。

简单起见,我们就假设这个数据集中只有Alice。

那么,它的损失函数就是这样。

那么它的权重w跟偏差b,在图上标示,那么就有6个权重变量,3个偏差变量。

于是,便将损失函数写为多变量函数。

想象一下,我们只要调整w1,就可能导致L的变化。那具体是如何变化的呢?这就需要计算偏导数了。

利用链式求导法则进行反向求导,而这一过程就叫做反向传播

详细计算过程就不放在这里了,大家去他个人网站去看哦~(链接已附文末)

作者温馨提示,看这个过程的时候不要着急,拿出手中的笔和纸,能够帮助你理解。

接下来,使用随机梯度下降的优化算法,公式表示如下(以w1为例):

其中的“学习速率”控制着训练速度,过大或者过小都不合适。

如果我们将所有的变量都进行这样的优化,那么损失函数将逐渐减少,神经网络就能够得到改善。

简单来说,整个训练过程是这样的:

1、数据集中选择一个样本,就如Alice。

2、利用反向传播计算所有变量的偏导数。

3、使用随机梯度下降来训练神经网络,更新变量。

4、返回步骤1。

神经网络的部分就介绍到这里,怎么样?看完之后,有什么感想?

是不是觉得神经网络也还好了。还有其他概念等着你来学习呢!

本文经AI新媒体量子位(公众号ID:QbitAI)授权转载,转载请联系出处。

  • 发表于:
  • 原文链接http://news.51cto.com/art/202006/619499.htm
  • 如有侵权,请联系 cloudcommunity@tencent.com 删除。

扫码

添加站长 进交流群

领取专属 10元无门槛券

私享最新 技术干货

扫码加入开发者社群
领券
http://www.vxiaotou.com