前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >【传感器标定】相机内参标定(c++、python代码)

【传感器标定】相机内参标定(c++、python代码)

作者头像
读书猿
发布2024-02-05 15:20:01
2680
发布2024-02-05 15:20:01
举报
文章被收录于专栏:无人驾驶感知无人驾驶感知

前言

  • 文章主要给出利用棋盘格标定的代码, python 与 c++ 标定代码都会给出。
  • 普通相机与鱼眼相机标定代码细微之处有所不同,普通相机与鱼眼相机标定代码本文都会还会。

代码

python 代码

普通相机

代码需要自行修改的地方

  1. 棋盘格长、宽内角点数目
  2. 棋盘格图片文件夹路径
代码语言:javascript
复制
import cv2
import numpy as np
import glob

# 找棋盘格角点
# 设置寻找亚像素角点的参数,采用的停止准则是最大循环次数30和最大误差容限0.001
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)  # 阈值
# 棋盘格模板规格 内角点数目
w = 11
h = 8
# 世界坐标系中的棋盘格点,例如(0,0,0), (1,0,0), (2,0,0) ....,(8,5,0),去掉Z坐标,记为二维矩阵
objp = np.zeros((w * h, 3), np.float32)
objp[:, :2] = np.mgrid[0:w, 0:h].T.reshape(-1, 2)
objp = objp * 35  # 35mm

# 储存棋盘格角点的世界坐标和图像坐标对
objpoints = []  # 在世界坐标系中的三维点
imgpoints = []  # 在图像平面的二维点
# 加载文件夹下所有的jpg图像
images = glob.glob('F:/aproject/camera_car/head_camera/useful/*.jpg')  # 拍摄的十几张棋盘图片所在目录

i = 0
for fname in images:
    img = cv2.imread(fname)
    # 获取画面中心点
    # 获取图像的长宽
    h1, w1 = img.shape[0], img.shape[1]
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    u, v = img.shape[:2]
    # 找到棋盘格角点
    ret, corners = cv2.findChessboardCorners(gray, (w, h), None)
    # 如果找到足够点对,将其存储起来
    if ret == True:
        print("i:", i)
        i = i + 1
        # 在原角点的基础上寻找亚像素角点
        cv2.cornerSubPix(gray, corners, (11, 11), (-1, -1), criteria)
        # 追加进入世界三维点和平面二维点中
        objpoints.append(objp)
        imgpoints.append(corners)
        # 将角点在图像上显示
        cv2.drawChessboardCorners(img, (w, h), corners, ret)
        cv2.namedWindow('findCorners', cv2.WINDOW_NORMAL)
        cv2.resizeWindow('findCorners', 640, 480)
        cv2.imshow('findCorners', img)
        cv2.waitKey(100)
    else:
        print("标定失败", fname)
cv2.destroyAllWindows()
print('正在计算')
# 标定
ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, gray.shape[::-1], None, None)

print("ret标定误差:", ret)  # 标定误差 0.1-0.5
print("mtx内参数矩阵:\n", mtx.reshape(-1).tolist())  # 内参数矩阵
print("dist畸变值:\n", dist.reshape(-1).tolist())  # 畸变系数   distortion cofficients = (k_1,k_2,p_1,p_2,k_3)
print("rvecs旋转(向量)外参:\n", rvecs)  # 旋转向量  # 外参数
print("tvecs平移(向量)外参:\n", tvecs)  # 平移向量  # 外参数
鱼眼相机
代码语言:javascript
复制
import numpy as np
import cv2
import glob

# Define the chess board rows and columns
CHECKERBOARD = (11, 8)
subpix_criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.1)
calibration_flags = cv2.fisheye.CALIB_RECOMPUTE_EXTRINSIC + cv2.fisheye.CALIB_CHECK_COND + cv2.fisheye.CALIB_FIX_SKEW
objp = np.zeros((1, CHECKERBOARD[0] * CHECKERBOARD[1], 3), np.float32)
objp[0, :, :2] = np.mgrid[0:CHECKERBOARD[0], 0:CHECKERBOARD[1]].T.reshape(-1, 2)
objpoints = []  # 3d point in real world space
imgpoints = []  # 2d points in image plane.
counter = 0
images = glob.glob('F:\\useful_image\\*.jpg')  # 拍摄的十几张棋盘图片所在目录
i = 0

for path in images:
    # Load the image and convert it to gray scale
    img = cv2.imread(path)
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    # Find the chess board corners
    ret, corners = cv2.findChessboardCorners(gray, CHECKERBOARD,
                                             cv2.CALIB_CB_ADAPTIVE_THRESH + cv2.CALIB_CB_FAST_CHECK + cv2.CALIB_CB_NORMALIZE_IMAGE)
    # Make sure the chess board pattern was found in the image
    if ret:
        i += 1
        print(i, path)
        objpoints.append(objp)
        cv2.cornerSubPix(gray, corners, (3, 3), (-1, -1), subpix_criteria)
        imgpoints.append(corners)
        cv2.drawChessboardCorners(img, (11, 8), corners, ret)
        cv2.namedWindow('findCorners', cv2.WINDOW_NORMAL)
        cv2.resizeWindow('findCorners', 640, 480)
        cv2.imshow('findCorners', img)
        cv2.waitKey(200)
    else:
        print("!!!!!", path)
    counter += 1
N_imm = counter  # number of calibration images
K = np.zeros((3, 3))
D = np.zeros((4, 1))
rvecs = [np.zeros((1, 1, 3), dtype=np.float64) for i in range(N_imm)]
tvecs = [np.zeros((1, 1, 3), dtype=np.float64) for i in range(N_imm)]
rms, _, _, _, _ = cv2.fisheye.calibrate(objpoints, imgpoints, gray.shape[::-1], K, D, rvecs, tvecs, calibration_flags,
                                        (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 1e-6))
print(K.reshape(-1).tolist(), "\n", D.reshape(-1).tolist(), "\n", rms)

c++ 代码

普通相机
代码语言:javascript
复制
#include <opencv2/opencv.hpp>
using namespace cv;
using namespace std;

int main()
{
    // 1. 准备标定棋盘图像
    int boardWidth = 11;  // 棋盘格横向内角点数量
    int boardHeight = 8; // 棋盘格纵向内角点数量
    float squareSize = 1.f; // 棋盘格格子的大小,单位为米,随便设置,不影响相机内参计算
    Size boardSize(boardWidth, boardHeight);

    vector<vector<Point3f>> objectPoints;
    vector<vector<Point2f>> imagePoints;
    vector<Point2f> corners;

    // 2. 拍摄棋盘图像
    Mat image, gray;
    namedWindow("image", WINDOW_NORMAL);
    vector<String> fileNames;
    glob("image3/*.jpg", fileNames);

    for (size_t i = 0; i < fileNames.size(); i++)
    {
        image = imread(fileNames[i], IMREAD_COLOR);
        cvtColor(image, gray, COLOR_BGR2GRAY);

        // 3. 读入图像数据,并提取角点
        bool found = findChessboardCorners(image, boardSize, corners, CALIB_CB_ADAPTIVE_THRESH + CALIB_CB_NORMALIZE_IMAGE + CALIB_CB_FAST_CHECK);
        if (found)
        {
            cornerSubPix(gray, corners, Size(11, 11), Size(-1, -1), TermCriteria(TermCriteria::EPS + TermCriteria::COUNT, 30, 0.1));
            drawChessboardCorners(image, boardSize, corners, found);
            imshow("image", image);
            waitKey();

            vector<Point3f> objectCorners;
            for (int j = 0; j < boardHeight; j++)
            {
                for (int k = 0; k < boardWidth; k++)
                {
                    objectCorners.push_back(Point3f(k * squareSize, j * squareSize, 0));
                }
            }
            objectPoints.push_back(objectCorners);
            imagePoints.push_back(corners);
        }
    }

    // 4. 标定相机
    Mat cameraMatrix, distCoeffs;
    vector<Mat> rvecs, tvecs;
    calibrateCamera(objectPoints, imagePoints, image.size(), cameraMatrix, distCoeffs, rvecs, tvecs);

    cout << "Camera matrix:" << endl << cameraMatrix << endl;
    cout << "Distortion coefficients:" << endl << distCoeffs << endl;

    return 0;
}

校正

  • 标定获得了相机内参与畸变系数,我们可以对畸变图片就行校正。关于校正代码,下一篇博客再分享。
本文参与?腾讯云自媒体分享计划,分享自作者个人站点/博客。
原始发表:2023-11-13,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客?前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与?腾讯云自媒体分享计划? ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 前言
  • 代码
    • python 代码
      • 普通相机
      • 鱼眼相机
    • c++ 代码
      • 普通相机
  • 校正
相关产品与服务
对象存储
对象存储(Cloud Object Storage,COS)是由腾讯云推出的无目录层次结构、无数据格式限制,可容纳海量数据且支持 HTTP/HTTPS 协议访问的分布式存储服务。腾讯云 COS 的存储桶空间无容量上限,无需分区管理,适用于 CDN 数据分发、数据万象处理或大数据计算与分析的数据湖等多种场景。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档
http://www.vxiaotou.com