前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >字节5面挂,恶心到了。。。

字节5面挂,恶心到了。。。

作者头像
宫水三叶的刷题日记
发布2024-04-26 16:04:30
1140
发布2024-04-26 16:04:30
举报

回归主题。

来一道和「字节跳动」相关的算法原题。

题目描述

平台:LeetCode

题号:99

给你二叉搜索树的根节点 root,该树中的 恰好 两个节点的值被错误地交换。

请在不改变其结构的情况下,恢复这棵树 。

示例 1:

代码语言:javascript
复制
输入:root = [1,3,null,null,2]

输出:[3,1,null,null,2]

解释:3 不能是 1 的左孩子,因为 3 > 1 。交换 1 和 3 使二叉搜索树有效。

示例 2:

代码语言:javascript
复制
输入:root = [3,1,4,null,null,2]

输出:[2,1,4,null,null,3]

解释:2 不能在 3 的右子树中,因为 2 < 3 。交换 2 和 3 使二叉搜索树有效。

提示:

  • 树上节点的数目在范围
[2, 1000]

-2^{31} <= Node.val <= 2^{31} - 1

进阶:使用

O(n)

空间复杂度的解法很容易实现。你能想出一个只使用

O(1)

空间的解决方案吗?

基本分析

首先,别想复杂了。

所谓的恢复二叉树(两节点互换),只需要将两节点的 val 进行互换即可,而不需要对节点本身进行互换。

中序遍历 - 递归 & 迭代

二叉搜索树,其中序遍历是有序的。

要找到哪两个节点被互换,可通过比对中序遍历序列来实现。

但将整个中序遍历序列保存下来,再检测序列有序性的做法,复杂度是

O(n)

的(不要说题目要求的

O(1)

,连

O(h)

都达不到)。

所以第一步,这个「递归 & 迭代」的次优解,我们先考虑如何做到

O(h)

的空间复杂度,即在中序遍历过程中找到互换节点

其实也很简单,除了使用 ab 来记录互换节点,额外使用变量 last 来记录当前遍历过程中的前一节点即可:

若存在前一节点 last 存在,而且满足前一节点值大于当前节点(last.val > root.val),违反“有序性”,根据是否为首次出现该情况分情况讨论:

  • 若是首次满足条件,即 a == null,此时上一节点 last 必然是两个互换节点之一,而当前 root 只能说是待定,因为有可能是 lastroot 实现互换,也有可能是 last 和后续的某个节点实现互换。 此时有 a = last, b = root
  • 若是非首次满足条件,即 a != null,此时当前节点 root 必然是两个互换节点中的另外一个。 此时有 b = root

综上:如果整个中序遍历的序列中“逆序对”为一对,那么互换节点为该“逆序对”的两个成员;若“逆序对”数量为两对,则互换节点为「第一对“逆序对”的首个节点」和「第二对“逆序对”的第二个节点」。

Java 代码(递归):

代码语言:javascript
复制
class Solution {
    TreeNode a = null, b = null, last = null;
    public void recoverTree(TreeNode root) {
        dfs(root);
        int val = a.val;
        a.val = b.val;
        b.val = val;
    }
    void dfs(TreeNode root) {
        if (root == null) return ;
        dfs(root.left);
        if (last != null && last.val > root.val) {
            if (a == null) {
                a = last; b = root;
            } else {
                b = root;
            }
        }
        last = root;
        dfs(root.right);
    }
}

Java 代码(迭代):

代码语言:javascript
复制
class Solution {
    public void recoverTree(TreeNode root) {
        Deque<TreeNode> d = new ArrayDeque<>();
        TreeNode a = null, b = null, last = null;
        while (root != null || !d.isEmpty()) {
            while (root != null) {
                d.addLast(root);
                root = root.left;
            }
            root = d.pollLast();
            if (last != null && last.val > root.val) {
                if (a == null) {
                    a = last; b = root;
                } else {
                    b = root;
                }
            }
            last = root;
            root = root.right;
        }
        int val = a.val;
        a.val = b.val;
        b.val = val;
    }
}
  • 时间复杂度:
O(n)
  • 空间复杂度:
O(h)

,其中

h

为树高

中序遍历 - Morris 遍历

Morris 遍历也就是经常说到的“神级遍历”,其本质是通过做大常数来降低空间复杂度。

还是以二叉树的中序遍历为例,无论是递归或是迭代,为了在遍历完左节点(也可以是左子树)时,仍能回到父节点,我们需要使用数据结构栈,只不过在递归做法中是用函数调用充当栈,而在迭代做法则是显式栈。

这使得空间复杂度为

O(h)

,而 Morris 遍历的核心则是利用“路径底部节点”中的空闲指针进行线索。

举个 ?,对于一棵最简单的二叉树:

在中序遍历过程中,如果选择递归或迭代方式,并且不使用栈的情况,当遍历完左子节点(或左子树的最后一个节点)后,将会面临无法返回根节点的问题。

在 Morris 遍历中,从根节点开始,尚未真正遍历左子节点之前,就会先建立「左子节点(或左子树的最后一个节点)」与「当前根节点」之间的链接,从而避免使用栈。

具体的,Morris 遍历的中序遍历遵循如下流程(喜欢的话可以背过):

  1. 令根节点为当前节点
  2. 只要当前节点不为空(while (root != null) ),重复执行如下流程:
    • 若前驱节点的右子节点为空(t.right = null),将前驱节点的右子节点链接到当前节点(t.right = root),并将当前节点更新为左子节点(root = root.left
    • 若前驱节点的右子节点不为空,说明已链接到当前节点,此时将前驱节点的右子节点置空(删除链接 t.right = null),遍历当前节点,并将当前节点更新为右子节点(root = root.right
    • 若当前节点的左子节点为空(root.left = null),将当前节点更新为其右子节点(root = root.right)
    • 若当前节点的左子节点不为空,利用临时变量 t 存储,找到当前节点的前驱节点(左子树中最后一个节点):

Java 代码:

代码语言:javascript
复制
class Solution {
    public void recoverTree(TreeNode root) {
        TreeNode a = null, b = null, last = null;
        while (root != null) {
            if (root.left == null) {
                if (last != null && last.val > root.val) {
                    if (a == null) {
                        a = last; b = root;
                    } else {
                        b = root;
                    }
                }
                last = root;
                root = root.right;
            } else {
                TreeNode t = root.left;
                while (t.right != null && t.right != root) t = t.right;
                if (t.right == null) { // 若前驱节点右子树为空, 说明是真正遍历左子树前, 建立与当前根节点的链接, 然后开始真正遍历左子树
                    t.right = root;
                    root = root.left;
                } else {  // 若已存在链接, 说明是第二次访问根节点, 左子树(前驱节点)已遍历完, 此时应该解开链接, 遍历当前节点以及右子树
                    t.right = null;
                    if (last != null && last.val > root.val) {
                        if (a == null) {
                            a = last; b = root;
                        } else {
                            b = root;
                        }
                    }
                    last = root;
                    root = root.right;
                }
            }
        }
        int val = a.val;
        a.val = b.val;
        b.val = val;
    }
}

C++ 代码:

代码语言:javascript
复制
class Solution {
public:
    void recoverTree(TreeNode* root) {
        TreeNode *a = nullptr, *b = nullptr, *last = nullptr;
        while (root != nullptr) {
            if (root->left == nullptr) {
                if (last != nullptr && last->val > root->val) {
                    if (a == nullptr) {
                        a = last; b = root;
                    } else {
                        b = root;
                    }
                }
                last = root;
                root = root->right;
            } else {
                TreeNode *t = root->left;
                while (t->right != nullptr && t->right != root) t = t->right;
                if (t->right == nullptr) {
                    t->right = root;
                    root = root->left;
                } else {
                    t->right = nullptr;
                    if (last != nullptr && last->val > root->val) {
                        if (a == nullptr) {
                            a = last, b = root;
                        } else {
                            b = root;
                        }
                    }
                    last = root;
                    root = root->right;
                }
            }
        }
        swap(a->val, b->val);
    }
};
  • 时间复杂度:
O(n)
  • 空间复杂度:
O(1)
本文参与?腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2024-04-24,如有侵权请联系?cloudcommunity@tencent.com 删除

本文分享自 宫水三叶的刷题日记 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与?腾讯云自媒体分享计划? ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 题目描述
  • 基本分析
  • 中序遍历 - 递归 & 迭代
  • 中序遍历 - Morris 遍历
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档
http://www.vxiaotou.com