当前位置:主页 > 查看内容

TensorFlow 2 quickstart for beginners

发布时间:2021-07-28 00:00| 位朋友查看

简介:This short introduction uses Keras to: Build a neural network that classifies images.Train this neural network.And, finally, evaluate the accuracy of the model. import tensorflow as tf Load and prepare the MNIST dataset. Convert the sample……

This short introduction uses Keras to:

Build a neural network that classifies images.Train this neural network.And, finally, evaluate the accuracy of the model.
import tensorflow as tf

Load and prepare the MNIST dataset. Convert the samples from integers to floating-point numbers:

mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0

Build the tf.keras.Sequential model by stacking layers. Choose an optimizer and loss function for training:

model = tf.keras.models.Sequential([
 tf.keras.layers.Flatten(input_shape=(28, 28)),
 tf.keras.layers.Dense(128, activation='relu'),
 tf.keras.layers.Dropout(0.2),
 tf.keras.layers.Dense(10)
])

For each example the model returns a vector of "logits" or "log-odds" scores, one for each class.

predictions = model(x_train[:1]).numpy()
predictions

The tf.nn.softmax function converts these logits to "probabilities" for each class:

tf.nn.softmax(predictions).numpy()

Note: It is possible to bake this tf.nn.softmax in as the activation function for the last layer of the network. While this can make the model output more directly interpretable, this approach is discouraged as it's impossible to provide an exact and numerically stable loss calculation for all models when using a softmax output.

The losses.SparseCategoricalCrossentropy loss takes a vector of logits and a True index and returns a scalar loss for each example.

loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)

This loss is equal to the negative log probability of the true class: It is zero if the model is sure of the correct class.

This untrained model gives probabilities close to random (1/10 for each class), so the initial loss should be close to -tf.math.log(1/10) ~= 2.3

loss_fn(y_train[:1], predictions).numpy()
model.compile(optimizer='adam',
 loss=loss_fn,
 metrics=['accuracy'])

The Model.fit method adjusts the model parameters to minimize the loss:

model.fit(x_train, y_train, epochs=5)

The Model.evaluate method checks the models performance, usually on a "Validation-set" or "Test-set".

model.evaluate(x_test, y_test, verbose=2)

The image classifier is now trained to ~98% accuracy on this dataset. To learn more, read the TensorFlow tutorials.

If you want your model to return a probability, you can wrap the trained model, and attach the softmax to it:

probability_model = tf.keras.Sequential([
 model,
 tf.keras.layers.Softmax()
])
probability_model(x_test[:5])

代码链接: https://codechina.csdn.net/csdn_codechina/enterprise_technology/-/blob/master/CV_Classification/TensorFlow%202%20quickstart%20for%20beginners.ipynb


本文转自网络,原文链接:https://developer.aliyun.com/article/785857
本站部分内容转载于网络,版权归原作者所有,转载之目的在于传播更多优秀技术内容,如有侵权请联系QQ/微信:153890879删除,谢谢!

推荐图文


随机推荐