前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >keras里ConvLSTM2D的实现

keras里ConvLSTM2D的实现

原创
作者头像
1nsights
发布2022-02-23 19:48:21
1.5K0
发布2022-02-23 19:48:21
举报
文章被收录于专栏:深度学习tech

https://github.com/keras-team/keras/blob/master/keras/layers/convolutional_recurrent.py

从keras的源码学习一下convLSTM的实现,有助于理解convLSTM的原理

ConvLSTM把LSTM中的全连接操作换成了卷积的形式,可以更好的提取出图像的特征

keras里ConvLSTM2D的参数和输入

https://keras.io/api/layers/recurrent_layers/conv_lstm2d/

代码语言:python
代码运行次数:0
复制
tf.keras.layers.ConvLSTM2D(
    filters,
    kernel_size,
    strides=(1, 1),
    padding="valid",
    data_format=None,
    dilation_rate=(1, 1),
    activation="tanh",
    recurrent_activation="hard_sigmoid",
    use_bias=True,
    kernel_initializer="glorot_uniform",
    recurrent_initializer="orthogonal",
    bias_initializer="zeros",
    unit_forget_bias=True,
    kernel_regularizer=None,
    recurrent_regularizer=None,
    bias_regularizer=None,
    activity_regularizer=None,
    kernel_constraint=None,
    recurrent_constraint=None,
    bias_constraint=None,
    return_sequences=False,
    return_state=False,
    go_backwards=False,
    stateful=False,
    dropout=0.0,
    recurrent_dropout=0.0,
    **kwargs
)

几个重要的输入参数:

  • filters: Integer, the dimensionality of the output space (i.e. the number of output filters in the convolution).
  • kernel_size: An integer or tuple/list of n integers, specifying the dimensions of the convolution window.

调用时:

  • inputs: A 5D tensor.

5D tensor with shape: (samples, time, channels, rows, cols) - If data_format='channels_last' 5D tensor with shape: (samples, time, rows, cols, channels)

Output shape

  • If return_state: a list of tensors. The first tensor is the output. The remaining tensors are the last states, each 4D tensor with shape: (samples, filters, new_rows, new_cols) if data_format='channels_first' or shape: (samples, new_rows, new_cols, filters) if data_format='channels_last'. rows and cols values might have changed due to padding.
  • If return_sequences: 5D tensor with shape: (samples, timesteps, filters, new_rows, new_cols) if data_format='channels_first' or shape: (samples, timesteps, new_rows, new_cols, filters) if data_format='channels_last'.
  • Else, 4D tensor with shape: (samples, filters, new_rows, new_cols) if data_format='channels_first' or shape: (samples, new_rows, new_cols, filters) if data_format='channels_last'.

使用实例

https://keras.io/examples/vision/conv_lstm/

代码语言:python
代码运行次数:0
复制
# Construct the input layer with no definite frame size.
inp = layers.Input(shape=(None, *x_train.shape[2:]))

# We will construct 3 `ConvLSTM2D` layers with batch normalization,
# followed by a `Conv3D` layer for the spatiotemporal outputs.
x = layers.ConvLSTM2D(
    filters=64,
    kernel_size=(5, 5),
    padding="same",
    return_sequences=True,
    activation="relu",
)(inp)

实现ConvLSTMCell的灵魂

1644893399774-01bbe887-cbe2-4818-8e6d-b0376e3c2256.png
1644893399774-01bbe887-cbe2-4818-8e6d-b0376e3c2256.png

上面的公式对应到代码里: inputs_i,inputs_f,inputs_c,inputs_o 在不使用dropout时相等,均为输入X hidden state 隐状态h_tm同上

代码语言:python
代码运行次数:0
复制
    x_i = self.input_conv(inputs_i, kernel_i, bias_i, padding=self.padding)
    x_f = self.input_conv(inputs_f, kernel_f, bias_f, padding=self.padding)
    x_c = self.input_conv(inputs_c, kernel_c, bias_c, padding=self.padding)
    x_o = self.input_conv(inputs_o, kernel_o, bias_o, padding=self.padding)
    h_i = self.recurrent_conv(h_tm1_i, recurrent_kernel_i)
    h_f = self.recurrent_conv(h_tm1_f, recurrent_kernel_f)
    h_c = self.recurrent_conv(h_tm1_c, recurrent_kernel_c)
    h_o = self.recurrent_conv(h_tm1_o, recurrent_kernel_o)

    i = self.recurrent_activation(x_i + h_i)
    f = self.recurrent_activation(x_f + h_f)
    c = f * c_tm1 + i * self.activation(x_c + h_c)
    o = self.recurrent_activation(x_o + h_o)
    h = o * self.activation(c)
代码语言:python
代码运行次数:0
复制
   def call(self, inputs, states, training=None):
    h_tm1 = states[0]  # previous memory state
    c_tm1 = states[1]  # previous carry state

    # dropout matrices for input units
    dp_mask = self.get_dropout_mask_for_cell(inputs, training, count=4)
    # dropout matrices for recurrent units
    rec_dp_mask = self.get_recurrent_dropout_mask_for_cell(
        h_tm1, training, count=4)

    if 0 < self.dropout < 1.:
      inputs_i = inputs * dp_mask[0]
      inputs_f = inputs * dp_mask[1]
      inputs_c = inputs * dp_mask[2]
      inputs_o = inputs * dp_mask[3]
    else:
      inputs_i = inputs
      inputs_f = inputs
      inputs_c = inputs
      inputs_o = inputs

    if 0 < self.recurrent_dropout < 1.:
      h_tm1_i = h_tm1 * rec_dp_mask[0]
      h_tm1_f = h_tm1 * rec_dp_mask[1]
      h_tm1_c = h_tm1 * rec_dp_mask[2]
      h_tm1_o = h_tm1 * rec_dp_mask[3]
    else:
      h_tm1_i = h_tm1
      h_tm1_f = h_tm1
      h_tm1_c = h_tm1
      h_tm1_o = h_tm1

    (kernel_i, kernel_f, kernel_c, kernel_o) = tf.split(
        self.kernel, 4, axis=self.rank + 1)
    (recurrent_kernel_i, recurrent_kernel_f, recurrent_kernel_c,
     recurrent_kernel_o) = tf.split(
         self.recurrent_kernel, 4, axis=self.rank + 1)

    if self.use_bias:
      bias_i, bias_f, bias_c, bias_o = tf.split(self.bias, 4)
    else:
      bias_i, bias_f, bias_c, bias_o = None, None, None, None

    x_i = self.input_conv(inputs_i, kernel_i, bias_i, padding=self.padding)
    x_f = self.input_conv(inputs_f, kernel_f, bias_f, padding=self.padding)
    x_c = self.input_conv(inputs_c, kernel_c, bias_c, padding=self.padding)
    x_o = self.input_conv(inputs_o, kernel_o, bias_o, padding=self.padding)
    h_i = self.recurrent_conv(h_tm1_i, recurrent_kernel_i)
    h_f = self.recurrent_conv(h_tm1_f, recurrent_kernel_f)
    h_c = self.recurrent_conv(h_tm1_c, recurrent_kernel_c)
    h_o = self.recurrent_conv(h_tm1_o, recurrent_kernel_o)

    i = self.recurrent_activation(x_i + h_i)
    f = self.recurrent_activation(x_f + h_f)
    c = f * c_tm1 + i * self.activation(x_c + h_c)
    o = self.recurrent_activation(x_o + h_o)
    h = o * self.activation(c)
    return h, [h, c]

  @property
  def _conv_func(self):
    if self.rank == 1:
      return backend.conv1d
    if self.rank == 2:
      return backend.conv2d
    if self.rank == 3:
      return backend.conv3d

  def input_conv(self, x, w, b=None, padding='valid'):
    conv_out = self._conv_func(
        x,
        w,
        strides=self.strides,
        padding=padding,
        data_format=self.data_format,
        dilation_rate=self.dilation_rate)
    if b is not None:
      conv_out = backend.bias_add(conv_out, b, data_format=self.data_format)
    return conv_out

  def recurrent_conv(self, x, w):
    strides = conv_utils.normalize_tuple(
        1, self.rank, 'strides', allow_zero=True)
    conv_out = self._conv_func(
        x, w, strides=strides, padding='same', data_format=self.data_format)
    return conv_out

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • keras里ConvLSTM2D的参数和输入
    • 几个重要的输入参数:
      • 调用时:
        • 使用实例
        • 实现ConvLSTMCell的灵魂
        领券
        问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档
        http://www.vxiaotou.com